Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T20:53:44.009Z Has data issue: false hasContentIssue false

Intercalation of mixed chloride–fluorides of antimony in graphite

Published online by Cambridge University Press:  31 January 2011

W. R. Datars
Affiliation:
Department of Physics, McMaster University, Hamilton, Ontario, L8S4M1 Canada
H. Zaleski
Affiliation:
Department of Physics, McMaster University, Hamilton, Ontario, L8S4M1 Canada
P. K. Ummat
Affiliation:
Department of Physics, McMaster University, Hamilton, Ontario, L8S4M1 Canada
Get access

Abstract

The intercalation of SbCl4F and SbCl3F2 into graphite is described. The c-axis identity period, measured by (00/) x-ray diffraction, is 9.30, 12.69, and 16.04 Å for stages 1, 2, and 3, respectively, of SbCl4 F-intercalated graphite. The c-axis identity period for stage 1 SbCl4F-intercalated graphite is 8.85 Å. Mass spectroscopy shows that the molecule in SbCl4F-intercalated graphite is a (SbCl4F)4 tetramer. The molecule in SbCl3F2-intercalated graphite is a (SbCl3F2)4 tetramer. Mossbauer measurements show that Sb is in a 5 + state in SbCl4F-intercalated graphite.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dresselhaus, M. S. and Dresselhaus, G.Adv. Phys. 30, 139 (1981).CrossRefGoogle Scholar
2Ummat, P. K.Zaleski, H. and Datars, W. R.Synth. Met. 14, 317 (1986).CrossRefGoogle Scholar
3Preiss, H.Carbon 23, 595 (1985); H., Preiss M., Goerlich and H., Sprenger Z. Anorg. Allg. Chem. 533, 37 (1986).CrossRefGoogle Scholar
4Preiss, H. and Fichtner-Schmittler, H., Cryst. Res. Technol. 21, 1047 (1986).CrossRefGoogle Scholar
5Ballard, J. G. and Birchall, T.J. Chem. Soc. Dalton Trans. 1976, 1854.Google Scholar
6Boolchand, F.Bresser, W. J.McDaniel, D.Sisson, K.Yeh, V. and Eklund, P. C.Solid State Commun. 40, 1049 (1981).CrossRefGoogle Scholar
7Friedt, J. M.Poinsot, R. and Soderholm, L.Solid State Commun. 49, 223 (1984).CrossRefGoogle Scholar
8Melin, J. and Herold, A.C. R. Acad. Sci. Paris 269, 877 (1969).Google Scholar
9Boeck, V. A. and Rudorff, W.Z. Anorg. Allg. Chem. 384, 169 (1971).CrossRefGoogle Scholar
10Selig, H. and Ebert, L. B.Adv. Inorg. Chem. 23, 281 (1980).Google Scholar
11Preiss, H.Z. Anorg. Allg. Chem. 389, 280 (1972).CrossRefGoogle Scholar
12Ballard, G. Ph. D. thesis McMaster University, Hamilton, Ontario (1977) (unpublished).Google Scholar
13Preiss, H.Z. Chem. 6, 350 (1966).CrossRefGoogle Scholar
14Zaleski, H. and Datars, W. R. Phys. Rev. (to be published).Google Scholar
15Muller, U.Z. Anorg. Allg. Chem. 454, 75 (1979).Google Scholar