Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T02:39:34.691Z Has data issue: false hasContentIssue false

The interaction of chemical kinetics and diffusion in the dynamics of chemical vapor infiltration

Published online by Cambridge University Press:  31 January 2011

Stanley Middleman
Affiliation:
Department of AMES/Chemical Engineering, University of California-San Diego, La Jolla, California 92093
Get access

Abstract

The classical model of Chemical Vapor Infiltration (CVI) treats diffusion and surface reaction in a representative cylindrical pore. Two significant modifications to that approach are presented herein. One accounts for more complex chemistry by allowing for both gas-phase and surface reactions which lead to film growth. The other couples the pore model to a reactor model for the region external to the porous preform. The results demonstrate that it is possible to select chemical schemes that yield densification from the interior to the exterior of the preform, thus avoiding premature trapping of interior voids.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Stinton, D. P.Besmann, T. M. and Lowden, R. A.Am. Ceram. Soc. Bull. 67, 350 (1988).Google Scholar
2Mohanty, K. K.Ottino, J.M. and Davis, H.T.Chem. Eng. Sci. 37, 905 (1982).Google Scholar
3Sahimi, M.Chem. Eng. Sci. 43, 2981 (1988).Google Scholar
4Tai, N.H. and Chou, T.W.J. Am. Ceram. Soc. 72, 414 (1989).CrossRefGoogle Scholar
5Gupte, S.M. and Tsamopoulos, J. A.J. Electrochem. Soc. 136, 555 (1989).Google Scholar
6Meyerson, B. S. and Jasinski, J. M.J. Appl. Phys. 61, 785 (1987).Google Scholar
7Yeckel, A.Middleman, S. and Hochberg, A.J. Electrochem. Soc. 136, 2038 (1989).CrossRefGoogle Scholar
8Rebenne, H. and Pollard, R.J. Am. Ceram. Soc. 70, 907 (1987).Google Scholar
9Colmet, R.Naslain, R.Hagenmuller, P. and Bernard, C.J. Elec-trochem. Soc. 129, 1367 (1982).Google Scholar
10Wong, P. and Robinson, M.J. Am. Ceram. Soc. 53, 617 (1970).Google Scholar
11Bickerdike, R. L.Brown, A.Hughes, G. and Ranson, R. in Proc. Fifth Conf. on Carbon (Pergamon Press, New York, 1962), Vol. I.Google Scholar
12Cussler, E. L.Diffusion: Mass Transfer in Fluid Systems (Cambridge Univ. Press New York, 1984).Google Scholar
13Starr, T.L.Ceram. Eng. Sci. Proc. 8, 951 (1987).Google Scholar
14Stinton, D. P.Caputo, A. J. and Lowden, R. A.Am. Ceram. Soc. Bull. 65, 347 (1986).Google Scholar
15Hannache, H.Langlais, F. and Naslain, R. in Proc. Fifth European Conf. on CVD (Electrochemical Society, Pennington, NJ, 1985), p. 219.Google Scholar