Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T12:10:17.011Z Has data issue: false hasContentIssue false

Intense optical absorption of defects created in Er3+-diffused layer in MgO (5 mol%)-doped LiNbO3 crystal by local Er3+ diffusion under Li-poor atmosphere

Published online by Cambridge University Press:  26 April 2012

De-Long Zhang*
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Opto-electronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China
Shi-Yu Xu
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Opto-electronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China
Fang Han
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Opto-electronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China
Ping-Rang Hua
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Opto-electronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China
Dao-Yin Yu
Affiliation:
Department of Opto-electronics and Information Engineering, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, People’s Republic of China; and Key Laboratory of Opto-electronic Information Technology, Tianjin University, Ministry of Education, Tianjin 300072, People’s Republic of China
Edwin Yue-Bun Pun
Affiliation:
Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Intense broad absorption bands centered around 1.7, 2.5, 3.1, and 3.7 eV take place in Er3+-diffused layer formed near MgO (5 mol%)-doped LiNbO3 crystal surface by in-diffusion of Er metal under Li-poor atmosphere. These bands are tentatively attributed to the defect absorption of small polarons, bipolarons, F-centers, and Q-polarons created due to Er3+ in-diffusion and Li2O loss from the crystal. It is interesting that the number, type, area, and peaking position of the bands can be controlled by the diffusion temperature and further oxidation treatment. Such material is a promising medium for data storage based upon two-color holography.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Brinkmann, R., Sohler, W., and Suche, H.: Continuous-wave Erbium-diffused LiNbO3 waveguide laser. Electron. Lett. 27, 415417 (1991).CrossRefGoogle Scholar
2.Becker, Ch., Oesselke, T., Pandavenes, J., Ricken, R., Rochhausen, K., Schreiberg, G., Sohler, W., Suche, H., Wessel, R., Balsamo, S., Montrosset, I., and Sciancalepore, D.: Advanced Ti:Er:LiNbO3 waveguide lasers. IEEE J. Sel. Top. Quantum Electron. 6, 101113 (2000).CrossRefGoogle Scholar
3.Huang, C.H. and McCaughan, L.: 980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping. IEEE J. Sel. Top. Quantum Electron. 2, 367372 (1996).CrossRefGoogle Scholar
4.Das, B.K., Ricken, R., Quiring, V., Suche, H., and Sohler, W.: Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide. Opt. Lett. 29, 165167 (2004).CrossRefGoogle ScholarPubMed
5.Schreiber, G., Hofmann, D., Grundkotter, W., Lee, Y.L., Suche, H., Quiring, V., Ricken, R., and Sohler, W.: Nonlinear integrated optical frequency converters with periodically poled Ti: LiNbO3 waveguides. Proc. SPIE Int. Soc. Opt. Eng. 4277, 144160 (2001).Google Scholar
6.Hesselink, L., Orlov, S.S., Liu, A., Akella, A., Lande, D., and Neurgaonkar, R.R.: Photorefractive materials for nonvolatile volume holographic data storage. Science 282, 10891094 (1998).CrossRefGoogle ScholarPubMed
7.Buse, K., Adibi, A., and Psaltis, D.: Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665668 (1998).CrossRefGoogle Scholar
8.Buse, K.: Light-induced charge transport processes in photorefractive crystals I: Models and experimental methods. Appl. Phys. B Lasers Opt. 64, 273291 (1997).CrossRefGoogle Scholar
9.Buse, K.: Light-induced charge transport processes in photorefractive crystals II: Materials. Appl. Phys. B Lasers Opt. 64, 391401 (1997).CrossRefGoogle Scholar
10.Tomita, Y., Hoshi, M., and Sunarno, S.: Nonvolatile two-color holographic recording in Er-doped LiNbO3. Jpn. J. Appl. Phys., Part 2 40, L1035L1037 (2001).CrossRefGoogle Scholar
11.Zhang, D.L., Ma, R., and Pun, E.Y.B.: Optical Absorption characteristics in thermally reduced Er: LiNbO3 crystals. Opt. Mater. 28, 453460 (2006).CrossRefGoogle Scholar
12.Zhang, D.L., Zhang, J., Wu, Z.K., and Pun, E.Y.B.: Light-induced absorption in strongly reduced congruent and nearly-stoichiometric Er: LiNbO3 crystals. Appl. Phys. A 83, 397409 (2006).CrossRefGoogle Scholar
13.Zhang, D.L., Hua, P.R., Liu, X.X., and Pun, E.Y.B.: Li-deficient, off-congruent MgO: LiNbO3 crystals prepared by post-grown Li-poor vapor transport equilibration for integrated optics. J. Am. Ceram. Soc. 93, 19911998 (2010).CrossRefGoogle Scholar
14.Arizmendi, L., Cabrera, J.M., and Agullo-Lopez, F.: Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction. J. Phys. C: Solid State Phys. 17, 515529 (1984).CrossRefGoogle Scholar
15.Akhmadullin, I.S., Golenishchev-Kutuzov, V.A., and Migachev, S.A.: Electronic structure of deep centers in LiNbO3. Phys. Solid State 40, 10121018 (1998).CrossRefGoogle Scholar
16.Bhatt, R., Ganesamoorthy, S., Bhaumik, I., Karnal, A.K., and Gupta, P.K.: Optical bandgap and electrical conductivity studies on near stoichiometric LiNbO3 crystals prepared by VTE process. J. Phys. Chem. Solids 73, 257261 (2012).CrossRefGoogle Scholar
17.Schirmer, O.F., Thiemann, O., and Wöhlecke, M.: Defects in LiNbO3. I. Experimental aspects. J. Phys. Chem. Solids 52, 185200 (1991).CrossRefGoogle Scholar
18.Schirmer, O.F. and von der Linde, D.: Two-photon- and X-ray-induced Nb4+ and O small polarons in LiNbO3. Appl. Phys. Lett. 33, 3538 (1978).CrossRefGoogle Scholar
19.Garcia-Cabanes, A., Sanz-Garcia, J.A., Cabrera, J.M., Agullo-Lopez, F., Zaldo, C., Pareja, R., Polgar, K., Raksanyi, K., and Folvari, I.: Influence of stoichiometry on defect-related phenomena in LiNbO3. Phys. Rev. B: Condens. Matter 37, 60856091 (1988).CrossRefGoogle Scholar
20.Faust, B., Muller, H., and Schirmer, O.F.: Free small polarons in LiNbO3. Ferroelectrics 153, 297302 (1994).CrossRefGoogle Scholar
21.Halliburton, L.E., Sweeney, K.L., and Chen, C.Y.: Electron spin resonance and optical studies of point defects in lithium niobate. Nucl. Instrum. Methods Phys. Res., Sect. B 229, 344347 (1984).CrossRefGoogle Scholar
22.Koppitz, J., Schirmer, O.F., and Kuznetsov, A.I.: Thermal dissociation of bipolarons in reduced undoped LiNbO3. Europhys. Lett. 4, 10551059 (1987).CrossRefGoogle Scholar
23.Sweeney, K.L. and Halliburton, L.E.: Oxygen vacancies in lithium niobate. Appl. Phys. Lett. 43, 336338 (1983).CrossRefGoogle Scholar
24.Ketchum, J.L., Sweeney, K.L., Halliburton, L.E., and Armington, A.F.: Vacuum annealing effects in lithium niobate. Phys. Lett. A 94, 450453 (1983).CrossRefGoogle Scholar
25.Smyth, D.M.: Defects and transport in LiNbO3. Ferroelectrics 50, 93102 (1983).CrossRefGoogle Scholar
26.Deleo, G.G., Dobson, J.L., Masters, M.F., and Bonjack, L.H.: Electronic structure of an oxygen vacancy in lithium niobate. Phys. Rev. B: Condens. Matter 37, 83948400 (1988).CrossRefGoogle ScholarPubMed
27.Donnerberg, H., Tomlinson, S.M., Catlow, C.R.A., and Schirmer, O.F.: Computer-simulation studies of intrinsic defects in LiNbO3 crystals. Phys. Rev. B: Condens. Matter 40, 1190911916 (1989).CrossRefGoogle ScholarPubMed
28.Schlarb, U. and Betzler, K.: Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate. Phys. Rev. B: Condens. Matter 50, 751757 (1994).CrossRefGoogle ScholarPubMed