Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T07:33:47.311Z Has data issue: false hasContentIssue false

Insights into the ion-assisted nucleation of diamond on silicon

Published online by Cambridge University Press:  31 January 2011

Sean P. McGinnis
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
Michael A. Kelly
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
Stig B. Hagström
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305–2205
Get access

Abstract

The ion-assisted nucleation of diamond was studied in a microwave plasma chemical vapor deposition system to gain insights into the processes controlling this phenomenon. The dependence of the nucleation density on bias voltage and temperature, as well as experiments with an electrically isolated substrate, are consistent with an ion bombardment mechanism for diamond nucleation. However, the growth of these nuclei is dominated by neutral species rather than ions. Measurements of the bias current under various conditions also provide details on the roles of the incident ion flux and substrate electron emission during this process. Furthermore, Monte Carlo simulations of the ion energy distribution at the substrate are compared to experimental measurements. Preferential sputtering, thermal spike, and carbon subplantation nucleation mechanisms are assessed based on the experimental and modeling results.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Aikawa, Y., and Baba, K., Appl. Phys. Lett. 57, 2646 (1990).CrossRefGoogle Scholar
2.Iijima, S., Aikawa, Y., and Baba, K., J. Mater. Res. 6, 1491 (1991).CrossRefGoogle Scholar
3.Yugo, S., Kanai, T., Kimura, T., and Muto, T., Appl. Phys. Lett. 58, 1036 (1991).CrossRefGoogle Scholar
4.Stoner, B. R., Williams, B. E., Wolter, S. D., Nishimura, K., and Glass, J. T., J. Mater. Res. 7, 257 (1992).CrossRefGoogle Scholar
5.Stoner, B., Ma, G-H. M., Wolter, S., and Glass, J., Phys. Rev. B 45, 11067 (1992).CrossRefGoogle Scholar
6.Jiang, X., Six, R., Klages, C-P., Zachai, R., Hartweg, M., and Füβer, H-J., Diam. Relat. Mater. 2, 407 (1992).CrossRefGoogle Scholar
7.Shigesato, Y., Boekenhauer, R., and Sheldon, B., Appl. Phys. Lett. 63, 324 (1993).CrossRefGoogle Scholar
8.Sheldon, B., Csencsits, R., Rankin, J., Boekenhauer, R., and Shigesato, Y., J. Appl. Phys. 75, 5001 (1994).CrossRefGoogle Scholar
9.Gerber, J., Weiler, M., Sorh, O., Jung, K., and Ehrhardt, H., Diam. Relat. Mater. 3, 506 (1994).CrossRefGoogle Scholar
10.Beckmann, R., Sobisch, B., Kulisch, W., and Rau, C., Diam. Relat. Mater. 3, 555 (1994).CrossRefGoogle Scholar
11.McGinnis, S., Kelly, M., and Hagström, S., Appl. Phys. Lett. 66, 3117 (1995).CrossRefGoogle Scholar
12.Kulisch, W., Sobisch, B., Kuhr, M., and Beckmann, R., Diam. Relat. Mater. 4, 401 (1995).CrossRefGoogle Scholar
13.Gerber, J., Sattel, S., Jung, K., Ehrhardt, H., and Robertson, J., Diam. Relat. Mater. 4, 559 (1995).CrossRefGoogle Scholar
14.Robertson, J., Gerber, J., Sattel, S., Weiler, M., Jung, K., and Ehrhardt, H., Appl. Phys. Lett. 66, 3287 (1995).CrossRefGoogle Scholar
15.Jiang, X., Schiffmann, K., and Klages, C-P., Phys. Rev. B 50, 8402 (1994).CrossRefGoogle Scholar
16.Jiang, X., Paul, M., Klages, C-P., and Jia, C. L., in Proceedings of the 4th International Symposium on Diamond Materials, edited by Ravi, K. and Dismukes, J. (The Electrochemical Society, Pennington, NJ, 1995), p. 50.Google Scholar
17.McGinnis, S., Kelly, M., Hagström, S., and Alvis, R., J. Appl. Phys. 79, 170 (1996).CrossRefGoogle Scholar
18.Stoner, B. and Glass, J., Appl. Phys. Lett. 60, 698 (1992).CrossRefGoogle Scholar
19.Jiang, X., Klages, C-P., Zachai, R., Hartweg, M., and Fü'er, H-J., Appl. Phys. Lett. 62, 3438 (1993).CrossRefGoogle Scholar
20.Wolter, S. D., Stoner, B. R., Glass, J. T., Ellis, P. J., Buhaenko, D. S., Jenkins, C. E., and Southworth, P., Appl. Phys. Lett. 62, 1215 (1993).CrossRefGoogle Scholar
21.Stoner, B. R., Sahaida, S., Bade, J., Southworth, P., and Ellis, P., J. Mater. Res. 8, 1334 (1993).CrossRefGoogle Scholar
22.Milne, D., Roberts, P., John, P., Jubber, M., Liehr, M., and Wilson, J., Diam. Relat. Mater. 4, 394 (1995).CrossRefGoogle Scholar
23.McGinnis, S., Kelly, M., and Hagström, S., in Proceedings of the 4th International Symposium on Diamond Materials, edited by Ravi, K. and Dismukes, J. (The Electrochemical Society, Pennington, NJ, 1995), p. 73.Google Scholar
24.Yugo, S., Kimura, T., and Muto, T., Vacuum 41, 1364 (1990).CrossRefGoogle Scholar
25.Stoner, B., Ma, G., Wolter, S., Zhu, W., Wang, Y-C., Davis, R., and Glass, J., Diam. Relat. Mater. 2, 142 (1993).CrossRefGoogle Scholar
26.Stöckel, R., Janischowsky, K., Rohmfeld, S., Ristein, J., Hundhausen, M., and Ley, L., J. Appl. Phys. 79, 768 (1996).CrossRefGoogle Scholar
27.McGinnis, S., Thesis, Ph.D., Stanford University, 1995.Google Scholar
28.Kondoh, E., Okta, T., Motomo, T., and Ohtsuka, K., J. Appl. Phys. 73, 3041 (1993).CrossRefGoogle Scholar
29.Hsu, W., J. Appl. Phys. 72, 3102 (1992).CrossRefGoogle Scholar
30.Stoner, B., Tessmer, G., and Dreifus, D., Appl. Phys. Lett. 62, 1803 (1993).CrossRefGoogle Scholar
31.Cobine, J., Gaseous Conductors, Theory and Engineering Applications (Dover Publications, Inc., New York, 1958).Google Scholar
32.Hagstrum, H., in A Physicist's Desk Reference, edited by Anderson, H. (American Institute of Physics, New York, 1989).Google Scholar
33.Handbook of Chemistry and Physics (The Chemical Rubber Company, Cleveland, OH, 1970).Google Scholar
34.Mandel, T., Frischholz, M., Helbig, R., and Hammerschimdt, A., Appl. Phys. 64, 3637 (1994).Google Scholar
35.Glass, R., Spellman, L., and Davis, R., Appl. Phys. Lett. 59, 2868 (1991).CrossRefGoogle Scholar
36.Choong, P., Ravi, K., D'Cruz, L., and Hatch, G., in Proceedings of the 28th Intersociety Energy Conversion Engineering Conference (American Chemical Society 1, Washington, DC, 1993), p. 555.Google Scholar
37.Schreck, M., Baur, T., and Stritzker, B., Diam. Relat. Mater. 4, 553 (1995).CrossRefGoogle Scholar
38.Emmert, P., Wright Patterson Air Force Base, OH, personal communication (1995).Google Scholar
39.Wolter, S., Glass, J., and Stoner, B., J. Appl. Phys. 77, 5119 (1995).CrossRefGoogle Scholar
40.Reinke, P., Kania, P., and Oelhafen, P., Thin Solid Films 270, 124 (1995).CrossRefGoogle Scholar
41.Yugo, S., Kimura, T., and Kanai, T., Diam. Relat. Mater. 2, 328 (1992).CrossRefGoogle Scholar
42.Chapman, B., Glow Discharge Processes (John Wiley and Sons, New York, 1980).Google Scholar
43.Chan, H., Thesis, Ph.D., Stanford University, 1990.Google Scholar
44.McVittie, J., Cheng, C., Zheng, J., Pelts, G., Hsiau, Z-K., and Saraswat, K., Speedie User's Manual (Stanford University–Integrated Circuits Laboratory, Version 2.5, 1993), p. 8Google Scholar
45.Ulacia, J. and McVittie, J., in Proceedings of the Seventh Symposium on Plasma Processing, edited by Mathad, G. and Schwatz, G. (The Electrochemical Society 88–22, Pennington, NJ, 1988), p. 50.Google Scholar
46.Chatham, H., Hils, D., Robertson, R., and Gallagher, A., J. Chem. Phys. 81, 1770 (1984).CrossRefGoogle Scholar
47.Lieberman, M. A., J. Appl. Phys. 65, 4186 (1989).CrossRefGoogle Scholar
48.Vincenti, W. and Kruger, C., Jr., Introduction to Physical Gas Dynamics (Krieger Publishing Co., Malabar, FL, 1986), p. 54.Google Scholar
49.Rohsenow, W. and Choi, H., Heat, Mass, and Momentum Transfer (Prentice-Hall, Englewood Cliffs, NJ, 1961).Google Scholar
50.Spencer, E., Schmidt, P., Joy, D., and Sansalone, F., Appl. Phys. Lett. 29, 118 (1976).CrossRefGoogle Scholar
51.Angus, J., Koidl, P., and Domitz, S., in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC Press, Inc., Boca Raton, FL, 1986).Google Scholar
52.Steffen, H., Marton, D., and Rabalais, J., Phys. Rev. Lett. 68, 1726 (1992).CrossRefGoogle Scholar
53.Koike, J., Parkin, D., and Mitchel, T., Appl. Phys. Lett. 60, 1450 (1992).CrossRefGoogle Scholar
54.Seitz, F. and Kohler, J., in Progress in Solid State Physics, edited by Seitz, F. and Turnbull, D. (Academic Press, New York, 1956).Google Scholar
55.Weissmantel, C., in Thin Films from Free Atoms and Particles, edited by Klabunde, K. (Academic Press, Inc., Orlando, FL, 1985), p. 153.CrossRefGoogle Scholar
56.Dodson, B., in Laser and Particle-Beam Modification of Chemical Processes on Surfaces, edited by Johnson, A. W., Loper, G. L., and Sigmon, T. W. (Mater. Res. Soc. Symp. Proc. 129, Pittsburgh, PA, 1989), p. 29.Google Scholar
57.Weissmantel, C., Thin Solid Films 92, 55 (1982).CrossRefGoogle Scholar
58.Suits, G. C., Am. Scientist 52, 395 (1964).Google Scholar
59.Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. Lett. 62, 1290 (1989).CrossRefGoogle Scholar
60.Lifshitz, Y., Lempert, G., and Grossman, E., Phys. Rev. Lett. 72, 2753 (1994).CrossRefGoogle Scholar
61.Robertson, J., Diam. Relat. Mater. 3, 361 (1994).CrossRefGoogle Scholar
62.Robertson, J., Diam. Relat. Mater. 4, 549 (1995).CrossRefGoogle Scholar
63.Lifshitz, Y., Kasi, S., Rabalais, J., and Eckstein, W., Phys. Rev. B 41, 10468 (1990).CrossRefGoogle Scholar
64.Angus, J. and Hayman, C., Science 241, 913 (1988).CrossRefGoogle Scholar
65.Robertson, J., Diam. Relat. Mater. 2, 984 (1993).CrossRefGoogle Scholar
66.Dodson, B., in Processing and Characterization of Materials Using Ion Beams, edited by Rehn, L. E., Greene, J., and Smidt, F. A. (Mater. Res. Soc. Symp. Proc. 128, Pittsburgh, PA, 1989), p. 137.Google Scholar
67.Windischmann, H., J. Appl. Phys. 62, 1800 (1987).CrossRefGoogle Scholar
68.Lifshitz, Y., Lempert, G., Rotter, S., Avigal, I., Uzan-Saguy, C., Kalish, R., Kulik, J., Marton, D., and Rabalais, J., Diam. Relat. Mater. 3, 542 (1994).CrossRefGoogle Scholar
69.McKenzie, D., Müller, D., and Pailthorpe, B., Phys. Rev. Lett. 67, 773 (1991).CrossRefGoogle Scholar