Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:19:08.592Z Has data issue: false hasContentIssue false

Inorganic nanotubes and fullerene-like nanoparticles

Published online by Cambridge University Press:  03 March 2011

R. Tenne*
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
*
a) Address all correspondence to this author. e-mail: [email protected] This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy This review article is based on the author's 2005 MRS Medal talk titled “Inorganic Nanotubes and Inorganic Fullerene-Like Materials: From Concept to Applications,” presented at the 2005 MRS Fall Meeting on November 30, 2005.
Get access

Abstract

We have proposed in 1992 that nanoparticles of layered compounds will be unstable against folding and close into fullerene-like structures and nanotubes (IF). Nanotubes and fullerene-like structures were prepared from numerous compounds with layered and recently also non-layered structure by various groups. Much progress has been achieved in the synthesis of inorganic nanotubes and fullerene-like nanoparticles of WS2 and MoS2 and many other metal dichalcogenides over the last few years. Substantial progress has been accomplished in the use of such nanoparticles for tribological applications and lately for impact resilient nanocomposites. These tests indicated that IF-MoS2 and IF-WS2 are heading for large scale applications in the automotive, machining, aerospace, electronics, defense, medical and numerous other kinds of industries. A few products based on these nanoparticles have been recently commercialized by “ApNano Materials, Inc”. Novel applications of inorganic nanotubes and fullerene-like nanoparticles in the fields of catalysis; microelectronics; Li rechargeable batteries; medical and opto-electronics will be discussed.

Type
Reviews
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kroto, H.W., Heath, J.R., O’Brein, S.C., Curl, R.F., Smalley, R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).CrossRefGoogle Scholar
2.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
3.Krätschmer, W., Lamb, L.D., Fostiropoulos, K., Huffman, D.R.: Solid C60—A new form of carbon. Nature 347, 354 (1990).CrossRefGoogle Scholar
4.Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of tungsten disulphide. Nature 360, 444 (1992).Google Scholar
5.Chianelli, R.R., Prestridge, E.B., Pecoraro, T.A., DeNeufville, J.P.: Molybdenum disuflide in the poorly crystalline “Rag” structure. Science 203, 1105 (1979).Google Scholar
6.Sanders, J.V.: Structure of catalytic particles. Ultramicroscopy 20, 33 (1986).CrossRefGoogle Scholar
7.Margulis, L., Salitra, G., Tenne, R., Talianker, M.: Nested fullerene-like structures. Nature 365, 113 (1993).CrossRefGoogle Scholar
8.Feldman, Y., Wasserman, E., Srolovitz, D.J., Tenne, R.: High rate, gas phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).Google Scholar
9.Hacohen, Y. Rosenfeld, Grunbaum, E., Tenne, R., Sloan, J., Hutchison, J.L.: Cage structures and nanotubes of NiCl2. Nature 395, 336 (1998).CrossRefGoogle Scholar
10.Hacohen, Y. Rosenfeld, Popovitz-Biro, R., Grunbaum, E., Prior, Y., Tenne, R.: Vapor-liquid-solid (VLS) growth of NiCl2 nanotubes via reactive gas laser ablation. Adv. Mater. 14, 1075 (2002).3.0.CO;2-H>CrossRefGoogle Scholar
11.Albu-Yaron, A., Arad, T., Popovitz-Biro, R., Bar-Sadan, M., Prior, Y., Jansen, M., Tenne, R.: Closed-cage (fullerene-like) structures of Cs2O. Angew. Chem., Int. Ed. Engl. 44, 4169 (2005).Google Scholar
12.Feldman, Y., Frey, G.L., Homyonfer, M., Lyakhovitskaya, V., Margulis, L., Cohen, H., Hodes, G., Hutchison, J.L., Tenne, R.: Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118, 5362 (1996).CrossRefGoogle Scholar
13.Goldberger, J., He, R., Zhang, Y., Lee, S., Yan, H., Choi, H.J., Yang, P.: Single-crystal gallium nitride nanotubes. Nature 422, 599 (2003).CrossRefGoogle ScholarPubMed
14.Yin, L.W., Bando, Y., Zhu, Y.C., Li, M.S., Tang, C.C., Golberg, D.: Single crytalline AlN nanotubes with carbon layer coating on the outer and inner surfaces via multiwall carbon nanotube-template-induced route. Adv. Mater. 17, 213 (2005).CrossRefGoogle Scholar
15.Yin, L.W., Bando, Y., Zhan, J.H., Li, M.S., Golberg, D.: Self-assembled highly faceted wurzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv. Mater. 17, 1972 (2005).CrossRefGoogle Scholar
16.Rothschild, A., Sloan, J., Tenne, R.: The growth of WS2 nanotubes phases. J. Am. Chem. Soc. 122, 5169 (2000).CrossRefGoogle Scholar
17.Zhu, Y.Q., Hsu, W.K., Grobert, N., Chang, B.H., Terrones, M., Terrones, H., Kroto, H.W., Walton, D.R.M.: Production of WS2 nanotubes. Chem. Mater. 12, 1190 (2000).CrossRefGoogle Scholar
18.Hsu, W.K., Chang, B.H., Zhu, Y.Q., Han, W.Q., Terrones, H., Terrones, M., Grobert, N., Cheetham, A.K., Kroto, H.W., Walton, D.R.M.: An alternative route to MoS2 nanotubes. J. Am. Chem. Soc. 122, 10155 (2000).CrossRefGoogle Scholar
19.Cumings, J., Zettl, A.: Mass-production of boron nitride double-wall nanotubes and nanococoons. Chem. Phys. Lett. 316, 211 (2000).CrossRefGoogle Scholar
20.Spahr, M.E., Bitterli, P., Nesper, R., Müller, M., Krumeich, F., Nissen, H.U.: Redox-active nanotubes of vanadium oxide. Angew. Chem., Int. Ed. Engl. 37, 1263 (1998).3.0.CO;2-R>CrossRefGoogle ScholarPubMed
21.Du, G.H., Chen, Q., Che, R.C., Yuan, Z.Y., Peng, L.M.: Preparation and structure analysis of titanium oxide nanotubes. Appl. Phys. Lett. 79, 3702 (2001).CrossRefGoogle Scholar
22.Feldman, Y., Zak, A., Popovitz-Biro, R., Tenne, R.: New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles. Solid State Sci. 2, 663 (2000).CrossRefGoogle Scholar
23.Zak, A., Feldman, Y., Alperovich, V., Rosentsveig, R., Tenne, R.: Growth mechanism of MoS2 fullerene-like nanoparticles by the gas phase synthesis. J. Am. Chem. Soc. 122, 11108 (2000).CrossRefGoogle Scholar
24.Pauling, L.: The structure of the chlorites. Proc. Natl. Acad. Sci. U.S.A. 16, 578 (1930).CrossRefGoogle ScholarPubMed
25.Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements (Pergamon, Oxford, UK,1990).Google Scholar
26.Fowler, P.W., Manolopoulos, D.E.: Ann. Atlas of Fullerenes (Oxford University Press, Cambridge, UK,1995).Google Scholar
27.Cote, M., Cohen, M.L., Chadi, D.J.: Theoretical study of the structural and electronic properties of GaSe nanotubes. Phys. Rev. B 58, R4277 (1998).CrossRefGoogle Scholar
28.Seifert, G., Terrones, H., Terrones, M., Jungnickel, G., Frauenheim, T.: Structure and electronic properties of MoS2 nanotubes. Phys. Rev. Lett. 85, 146 (2000).CrossRefGoogle ScholarPubMed
29.Enyashin, A.N., Medvedeva, N.I., Medvedeva, Yu.E., Ivanovskii, A.L.: Electronic structure and magnetic states of crystalline and fullerene-like forms of nickel dichloride NiCl2. Phys. Solid State 47, 527 (2005).CrossRefGoogle Scholar
30.Remskar, M., Mrzel, A., Skraba, Z., Jesih, A., Ceh, M., Demsar, J., Stadelmann, P., Levy, F., Mihailovic, D.: Self-assembly of subnanometer-diameter single-wall MoS2 nanotubes. Science 292, 479 (2001).Google Scholar
31.Parilla, P.A., Dillon, A.C., Jones, K.M., Riker, G., Schulz, D.L., Ginley, D.S., Heben, M.J.: The first inorganic fullerenes? Nature 397, 114 (1999).CrossRefGoogle Scholar
32.Parilla, P.A., Dillon, A.C., Parkinson, B.A., Jones, K.M., Alleman, J., Riker, G., Ginley, D.S., Heben, M.J.: Formation of nanooctahedra in molybdenum disulfide and molybdenum diselenide using pulsed laser vaporization. J. Phys. Chem. B 108, 6197 (2004).CrossRefGoogle ScholarPubMed
33.Zhao, M., Xia, Y., Li, F., Zhang, R.Q., Lee, S.T.: Strain energy and electronic structures of silicon carbide nanotubes: Density-functional calculations. Phys. Rev. B 71, 085312 (2005).CrossRefGoogle Scholar
34.Chopra, N.G., Zettl, A.: Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 105, 297 (1998).CrossRefGoogle Scholar
35.Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Rosentsveig, R., Seifert, G., Tenne, R.: Mechanical behavior of WS2 nanotubes. J. Mater. Res. 19, 454 (2004).CrossRefGoogle Scholar
36.Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Kanevsky, I., Wagner, H.D., Tenne, R.: What makes the mechanical properties of (WS2) nanotubes distinguishable from those of classical macroscopic objects. Proc. Natl. Acad. Sci. U.S.A. 103, 523 (2006).CrossRefGoogle Scholar
37.Rapoport, L., Fleischer, N., Tenne, R.: Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15, 1782 (2005).Google Scholar
38.Zelenski, C.M., Dorhout, P.K.: Template synthesis of near-monodisperse microscale nanofibers and anotubules. J. Am. Chem. Soc. 120, 734 (1998).CrossRefGoogle Scholar
39.Remskar, M., Skraba, Z., Cléton, F., Sanjinés, R., Lévy, F.: MoS2 as microtubes. Appl. Phys. Lett. 69, 351 (1996).CrossRefGoogle Scholar
40.Remskar, M., Skraba, Z., Ballif, C., Sanjinés, R., Lévy, F.: Stabilization of the rhombohedral polytype in MoS2 and WS2 microtubes: TEM and AFM study. Surf. Sci. 435, 637 (1999).CrossRefGoogle Scholar
41.Masuda, H., Fukuda, K.: Ordered metal nanohole arrays made by a 2-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).CrossRefGoogle Scholar
42.Li, Y.D., Li, X.L., He, R.R., Zhu, J., Deng, Z.X.: Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 124, 1411 (2002).CrossRefGoogle Scholar
43.Zhu, Y.Q., Hsu, W.K., Terrones, H., Grobert, N., Chang, B.H., Terrones, M., Wei, B.Q., Kroto, H.W., Walton, D.R.M., Boothroyd, C.B., Kinloch, I., Chen, G.Z., Windled, A.H., Frayd, D.J.: Morphology, structure and growth of WS2 nanotubes. J. Mater. Chem. 10, 2570 (2000).Google Scholar
44.Rosentsveig, R., Margolin, A., Feldman, Y., Popovitz-Biro, R., Tenne, R.: WS2 nanotube bundles and foils. Chem. Mater. 14, 471 (2002).Google Scholar
45.Yacaman, M.J., Lopez, H., Santiago, P., Galvan, D.H., Garzon, I.L., Reyes, A.: Studies of MoS2 structures produced by electron irradiation. Appl. Phys. Lett. 69, 1065 (1996).CrossRefGoogle Scholar
46.Vollath, D., Szabo, D.V.: Nanoparticles from compounds with layered structures. Acta Mater. 48, 953 (2000).CrossRefGoogle Scholar
47.Schuffenhauer, C., Popovitz-Biro, R., Tenne, R.: Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF). J. Mater. Chem. 12, 1587 (2002).CrossRefGoogle Scholar
48.Chen, J., Li, S.L., Tao, Z.L., Gao, F.: Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun. 980 (2003).CrossRefGoogle ScholarPubMed
49.Margolin, A., Popovitz-Biro, R., Albu-Yaron, A., Rapoport, L., Tenne, R.: Inorganic fullerene-like nanoparticles of TiS2. Chem. Phys. Lett. 411, 162 (2005).CrossRefGoogle Scholar
50.Chhowalla, M., Amaratunga, G.A.J.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 (2000).CrossRefGoogle ScholarPubMed
51.Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G.A.J., Naito, M., Kanki, T.: Fabrication of inorganic molybdenum disulfide fullerenes by arc in water. Chem. Phys. Lett. 368, 331 (2003).CrossRefGoogle Scholar
52.Therese, H.A., Rocker, F., Reiber, A., Li, J., Stepputat, M., Glasser, G., Kolb, U., Tremel, W.: VS2 nanotubes containing organic-amine templates from the NT-VOx precursors and reversible copper intercalation in NT-VS2. Angew. Chem., Int. Ed. Engl. 44, 202 (2005).CrossRefGoogle Scholar
53.Ajayan, P.M., Stephan, O., Redlich, P., Colliex, C.: Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures. Nature 375, 564 (1995).CrossRefGoogle Scholar
54.Hoyer, P.: Formation of a titanium dioxide nanotube array. Langmuir 12, 1411 (1996).CrossRefGoogle Scholar
55.Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., Niihara, K.: Formation of titanium oxide nanotube. Langmuir 14, 3160 (1998).CrossRefGoogle Scholar
56.Armstrong, A.R., Canales, J., Bruce, P.G.: WO2Cl2 nanotubes and nanowires. Angew. Chem., Int. Ed. Engl. 43, 4899 (2004).Google Scholar
57.Saupe, G.B., Waraksa, C.C., Kim, H-N., Han, Y.J., Kaschak, D.M., Skinner, D.M., Mallouk, T.E.: Nanoscale tubules formed by exfoliation of potassium hexaniobate. Chem. Mater. 12, 1556 (2000).CrossRefGoogle Scholar
58.Krivovichev, S.V., Kahlenberg, V., Kaindl, R., Mersdorf, E., Tananaev, I.G., Myasoedov, B.F.: Nanoscale tubules in uranyl selenates. Angew. Chem., Int. Ed. Engl. 44, 1134 (2005).CrossRefGoogle ScholarPubMed
59.Popovitz-Biro, R., Twersky, A., Hacohen, Y. Rosenfeld, Tenne, R.: Nanoparticles of CdCl2 with closed cage structure. Isr. J. Chem. 41, 7 (2001).Google Scholar
60.Yin, L.Y., Bando, Y., Golberg, D., Li, M.S.: Growth of single crystal InN nanotubes and nanowires by controlled-carbonitridation reaction route. Adv. Mater. 16, 1833 (2004).CrossRefGoogle Scholar
61.Hu, J., Bando, Y., Liu, Z.: Synthesis of gallium filled gallium oxide-zinc oxide composite coaxial nanotubes. Adv. Mater. 15, 1000 (2003).CrossRefGoogle Scholar
62.Ghadiri, M.R., Granja, J.R., Milligan, R.A., McRee, D.E., Khazanovich, N.: Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366, 324 (1993).CrossRefGoogle ScholarPubMed
63.Reches, M., Gazit, E.: Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625 (2003).CrossRefGoogle ScholarPubMed
64.Jensen, F., Toftlund, H.: Structure and stability of C24 and B12N12 isomers. Chem. Phys. Lett. 201, 89 (1993).Google Scholar
65.Oku, T., Nishiwaki, A., Narita, I., Gonda, M.: Formation and structure of B24N24 clusters. Chem. Phys. Lett. 380, 620 (2003).CrossRefGoogle Scholar
66.Rubio, A., Corkill, J.L., Cohen, M.L.: Theory of graphitic boron nitride nanotubes. Phys. Rev. B 49, 5081 (1994).CrossRefGoogle ScholarPubMed
67.Seifert, G., Terrones, H., Terrones, M., Frauenheim, T.: Novel NbS2 metallic nanotubes. Solid State Commun. 115, 635 (2000).CrossRefGoogle Scholar
68.Boustani, I., Quandt, A.: Nanotubules of bare boron clusters: Ab initio and density functional study. Europhys. Lett. 39, 527 (1997).CrossRefGoogle Scholar
69.Seifert, G., Hernandez, E.: Theoretical prediction of phosphorus nanotubes. Chem. Phys. Lett. 318, 355 (2000).CrossRefGoogle Scholar
70.Zhao, M., Xia, Y., Zhang, D., Mei, L.: Stability and electronic structure of AlN nanotubes. Phys. Rev. B. 68, 235415 (2003).CrossRefGoogle Scholar
71.Lee, S.M., Lee, Y.H., Hwang, Y.G., Elsner, J., Porezag, D., Frauenheim, T.: Stability and electronic structure of GaN nanotubes from density-functional calculations. Phys. Rev. B 60, 7788 (1999).CrossRefGoogle Scholar
72.Enyashin, A.N., Makurin, Yu.N., Ivanovskii, A.L.: Electronic band structure of b-ZrNCl-based nanotubes. Chem. Phys. Lett. 387, 85 (2004).CrossRefGoogle Scholar
73.Zak, A., Feldman, Y., Cohen, H., Lyakhovitskaya, V., Leitus, G., Popovitz-Biro, R., Reich, S., Tenne, R.: Alkali metal intercalation of fullerene-like MS2 (M = W, Mo) nanoparticles and their properties in comparison with bulk (2H) material. J. Am. Chem. Soc. 124, 4747 (2002).CrossRefGoogle Scholar
74.Johansson, A., Sambandamurthy, G., Shahar, D., Jacobson, N., Tenne, R.: Nanowire acting as a superconducting quantum interference device. Phys. Rev. Lett. 95, 116805 (2005).Google Scholar
75.Frey, G.L., Elani, S., Homyonfer, M., Feldman, Y., Tenne, R.: Optical absorption spectra of inorganic fullerene-like MS2 (M = Mo, W). Phys. Rev. B 57, 6666 (1998).CrossRefGoogle Scholar
76.Scheffer, L., Rosentzveig, R., Margolin, A., Popovitz-Biro, R., Seifert, G., Cohen, S.R., Tenne, R.: Scanning tunneling microscopy study of WS2 nanotubes. Phys. Chem. Chem. Phys. 4, 2095 (2002).CrossRefGoogle Scholar
77.Frey, G.L., Tenne, R., Matthews, M.J., Dresselhaus, M.S., Dresselhaus, G.: Raman and resonance Raman investigation of MoS2 nanoparticles. Phys. Rev. B 60, 2883 (1999) No.CrossRefGoogle Scholar
78.Rafailov, P.M., Thomsen, C., Gartsman, K., Kaplan-Ashiri, I., Tenne, R.: The antenna effect in an individual WS2 nanotube. Phys. Rev. B 72, 205436 (2005).CrossRefGoogle Scholar
79.Dobardziæ, E., Daki, B., Damnjanovic, M., Milosevic, I.: Zero m phonons in MoS2 nanotubes. Phys. Rev. B 71, 121405 (2005).CrossRefGoogle Scholar
80.Qian, L., Dub, Z.L., Yang, S.Y., Jin, Z.S.: Raman study of titania nanotube by soft chemical process. J. Mol. Struct. 749, 103 (2005).CrossRefGoogle Scholar
81.Chen, W., Mai, L., Peng, J., Xu, Q., Zhu, Q.: Raman spectroscopic study of vanadium oxide nanotubes. J. Solid State Chem. 177, 377 (2004).Google Scholar
82.Hung, S.C., Su, Y.K., Fang, T.H., Chang, S.J., Juang, F.S., Ji, L.W., Chuang, R.W.: Buckling instabilities in GaN nanotubes under uniaxial compression. Nanotechnology 16, 2203 (2005).CrossRefGoogle ScholarPubMed
83.Zhu, Y.Q., Sekine, T., Li, Y.H., Fay, M.W., Zhao, Y.M., Poa, C.H. Patrick, Wang, W.X., Martin, R., Brown, P.D., Fleischer, N., Tenne, R.: Shock-absorbing and failure mechanism of WS2 and MoS2 nanoparticles with fullerene-like structure under shockwave pressures. J. Am. Chem. Soc. 127, 16263 (2005).CrossRefGoogle Scholar
84.Chen, J., Kuriyama, N., Yuan, H.T., Takeshita, H.T., Sakai, T.: Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123, 11813 (2001).CrossRefGoogle ScholarPubMed
85.Chen, J., Li, S.L., Tao, Z.L.: Novel hydrogen storage properties of MoS2 nanotubes. J. Alloys Compd. 356–357, 413 (2003).CrossRefGoogle Scholar
86.Chen, J., Li, S.L., Tao, Z.L., Shen, Y.T., Cui, C.X.: Titanium disulfide nanotubes as hydrogen-storage materials. J. Am. Chem. Soc. 125, 5284 (2003).CrossRefGoogle ScholarPubMed
87.Dominko, R., Gaberscek, M., Arcon, D., Mrzel, A., Remskar, M., Mihailovic, D., Pejovnik, S., Jamnik, J.: Electrochemical preparation and characterization of Liz MoS2–x nanotubes. Electrochim. Acta 48, 3079 (2003).CrossRefGoogle Scholar
88.Spahr, M.E., Stoschitzki-Bitterli, P., Nesper, R., Haas, O., Novak, P.: Vanadium oxide nanotubes a new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 146, 2780 (1999).CrossRefGoogle Scholar
89.Nordlinder, S., Edstrom, K., Gustafsson, T.: The performance of vanadium oxide nanorolls as cathode material in a rechargeable lithium battery. Electrochem. Solid-State Lett. 4, A129 (2001).CrossRefGoogle Scholar
90.Dobley, A., Ngala, K., Shoufeng, T., Zavalij, P.Y., Whittingham, M.S.: Manganese vanadium oxide nanotubes: Synthesis, characterization, and electrochemistry. Chem. Mater. 13, 4382 (2001).Google Scholar
91.Li, J., Tang, Z., Zhang, Z.: H-titanate nanotube: A novel lithium intercalation host with large capacity and high rate capability. Electrochem. Comm. 7, 62 (2005).CrossRefGoogle Scholar
92.Rapoport, L., Bilik, Yu., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).Google Scholar
93.Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477 (2005).CrossRefGoogle Scholar
94.Hu, J.J., Zabinski, J.S.: Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM). Tribol. Lett. 18, 173 (2005).Google Scholar
95.Greenberg, R., Halperin, G., Etsion, I., Tenne, R.: The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol. Lett. 17, 179 (2004).CrossRefGoogle Scholar
96.Chen, W.X., Xu, Z.D., Tenne, R., Rosenstveig, R., Chen, W.L., Gan, H.Y., Tu, J.P.: Wear and friction of Ni–P electroless composite coating including inorganic fullerene-like WS2 nanoparticles. Adv. Eng. Mater. 4, 686 (2002).3.0.CO;2-I>CrossRefGoogle Scholar
97.Golan, Y., Drummond, C., Israelachvili, J., Tenne, R.: In situ imaging of shearing contacts in the surface forces apparatus. Wear 245, 190 (2000).CrossRefGoogle Scholar
98.Rothschild, A., Cohen, S.R., Tenne, R.: WS2 nanotubes as tips in scanning-probe microscopy. Appl. Phys. Lett. 75, 4025 (1999).CrossRefGoogle Scholar
99.Xu, J.F., Czerw, R., Webster, S., Carroll, D.L., Ballato, J., Nesper, R.: Nonlinear optical transmission in VOx nanotubes and VOx nanotube composites. Appl. Phys. Lett. 81, 1711 (2002).Google Scholar
100.Krusin-Elbaum, L., Newns, D.M., Zeng, H., Derycke, V., Sun, J.Z., Sandstrom, R.: Room-temperature ferromagnetic nanotubes controlled by electron or hole doping. Nature 431, 672 (2004).CrossRefGoogle ScholarPubMed
101.Qian, L., Teng, F., Jin, Z.S., Zhang, Z.J., Zhang, T., Hou, Y.B., Yang, S.Y., Xu, X.R.: Improved optoelectronic characteristics of light-emitting diodes by using a dehydrated nanotube titanic acid (DNTA)-polymer nanocomposites. J. Phys. Chem. B 108, 13928 (2004).CrossRefGoogle Scholar
102.Tokudome, H., Miyauchi, M.: Electrochromism of titanate-based nanotubes. Angew. Chem., Int. Ed. Engl. 44, 1974 (2005).Google Scholar
103.Adachi, M., Murata, Y., Okada, I., Yoshikawa, S.: Formation of titania nanotubes and applications for dye-sensitized solar cells. J. Electrochem. Soc. 150, G488 (2003).CrossRefGoogle Scholar
104.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano. Lett. 6, 215 (2006).CrossRefGoogle ScholarPubMed
105.Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V., Grimes, C.A.: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 (2004).CrossRefGoogle Scholar