Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T21:38:07.711Z Has data issue: false hasContentIssue false

Initial formation mechanisms of (Ga1−xMnx)N nanorods grown on Al2O3 (0001) substrates

Published online by Cambridge University Press:  31 January 2011

K.H. Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
J.Y. Lee
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
H.C. Jeon
Affiliation:
Quantum-functional Semiconductor Research Center and Department of Physics, Dongguk University, Seoul 100-715, Korea
T.W. Kang
Affiliation:
Quantum-functional Semiconductor Research Center and Department of Physics, Dongguk University, Seoul 100-715, Korea
H.Y. Kwon
Affiliation:
Advanced Semiconductor Research Center, Division of Electronics and Computer Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Korea
T.W. Kim*
Affiliation:
Advanced Semiconductor Research Center, Division of Electronics and Computer Engineering, Hanyang University, Seongdong-gu, Seoul 133-791, Korea
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The (Ga1−xMnx)N nanorods were grown on Al2O3 (0001) substrates by using rf-associated molecular beam epitaxy. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected-area diffraction pattern (SADP) results showed that the (Ga1−xMnx)N nanorods had (0001) preferential orientations. XRD patterns showed that the (Ga1−xMnx)N nanorods contained a small number of grains with different preferred orientations. High-resolution TEM (HRTEM) images showed that the (Ga1−xMnx)N nanorods consisted of different preferentially oriented grains. The initial formation mechanisms for the (Ga1−xMnx)N nanorods grown on Al2O3 (0001) substrates are described on the basis of the XRD, the TEM, the SADP, and the HRTEM results.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Kroutvar, M., Ducommun, Y., Heiss, D., Bichler, M., Schuh, D., Abstreiter, G., Finley, J.J.: Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81 2004CrossRefGoogle ScholarPubMed
2Berezovsky, J., Mikkelsen, M.H., Gywat, O., Stoltz, N.G., Coldren, L.A., Awschalom, D.D.: Nondestructive optical measurements of a single electron spin in a quantum dot. Science 314, 1916 2006CrossRefGoogle Scholar
3Chen, H.Y., Lin, H.W., Shen, C.H., Gwo, S.: Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si (111) by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 89, 243105 2006CrossRefGoogle Scholar
4Kim, J.H., Woo, J.T., Kim, T.W., Yoo, K.H., Lee, Y.T.: Three-dimensional electronic properties of multiple vertically stacked InAs/GaAs self-assembled quantum dots. J. Appl. Phys. 100, 063716 2006CrossRefGoogle Scholar
5Paladugu, M., Zou, J., Auchterlonie, G.J., Guo, Y.N., Kim, Y., Joyce, H.J., Gao, Q., Tan, H.H., Jagadish, C.: Evolution of InAs branches in InAs/GaAs nanowire heterostructures. Appl. Phys. Lett. 91, 133115 2007CrossRefGoogle Scholar
6Huang, Y., Duan, X., Cui, Y., Lieber, C.M.: Gallium nitride nanowire nanodevices. Nano Lett. 2, 101 2002CrossRefGoogle Scholar
7Lozano, J.G., Sánchez, A.M., Garca, R., González, D., Araújo, D., Ruffenach, S., Briot, O.: Nucleation of InN quantum dots on GaN by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 87, 263104 2005CrossRefGoogle Scholar
8Wang, Z., Zu, X., Gao, F., Weber, W.J., Crocombette, J-P.: Atomistic simulation of the size and orientation dependences of thermal conductivity in GaN nanowires. Appl. Phys. Lett. 90, 161923 2007CrossRefGoogle Scholar
9Lee, K.H., Kwon, Y.H., Kang, T.W., Jung, J.H., Lee, D.U., Kim, T.W.: Microstructural properties and atomic arrangements of GaN nanorods grown on Si (111) substrates. J. Cryst. Growth 310, 2977 2008CrossRefGoogle Scholar
10Huault, T., Brault, J., Natali, F., Damilano, B., Lefebvre, D., Nguyen, L., Leroux, M., Massies, J.: Blue-light emission from GaN/Al0.5Ga0.5N quantum dots. Appl. Phys. Lett. 92, 051911 2008CrossRefGoogle Scholar
11Kim, H-M., Kim, D.S., Park, Y.S., Kim, D.Y., Kang, T.W., Chung, K.S.: Growth of GaN nanorods by a hydride vapor-phase epitaxy method. Adv. Mater. 14, 991 20023.0.CO;2-L>CrossRefGoogle Scholar
12Thillosen, N., Sebald, K., Hardtdegen, H., Meijers, R., Calarco, R., Montanari, S., Kaluza, N., Gutowski, J., Lüth, H.: The state of strain in single GaN nanocolumns as derived from micro-photoluminescence measurements. Nano Lett. 6, 704 2006CrossRefGoogle ScholarPubMed
13Meijers, R., Richter, T., Calarco, R., Stoica, T., Bochem, H.P., Marso, M., Lüth, H.: GaN-nanowhiskers: MBE-growth conditions and optical properties. J. Cryst. Growth 289, 381 2006CrossRefGoogle Scholar
14Dietl, T., Ohno, H., Matsukura, F., Cibert, J., Ferrand, D.: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 2000CrossRefGoogle ScholarPubMed
15Sonoda, S., Shimizu, S., Sasaki, T., Yamamoto, Y., Hori, H.: Molecular beam epitaxy of wurtzite (Ga,Mn)N films on sapphire (0001) showing the ferromagnetic behaviour at room temperature. J. Cryst. Growth 237–239, 1358 2002CrossRefGoogle Scholar
16Thaler, G.T., Overberg, M.E., Gila, B., Frazier, R., Abernathy, C.R., Pearton, S.J., Lee, J.S., Lee, S.Y., Park, Y.D., Khim, Z.G., Kim, J., Ren, F.: Magnetic properties of n-GaMnN thin films. Appl. Phys. Lett. 80, 3964 2002CrossRefGoogle Scholar
17Graf, T., Gjukic, M., Brandt, M.S., Stutzmann, M., Ambacher, O.: The Mn3+/2+ acceptor level in group III nitrides. Appl. Phys. Lett. 81, 5159 2002CrossRefGoogle Scholar
18Polyakov, A.Y., Govorkov, A.V., Smimov, N.B., Pashkova, N.Y., Thaler, G.T., Overberg, M.E., Frazier, R., Abernathy, C.R., Pearton, S.J., Kim, J., Ren, F.: Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy. J. Appl. Phys. 92, 4989 2002CrossRefGoogle Scholar
19Sardar, K., Raju, A.R., Bansal, B., Venkataraman, V., Rao, C.N.R.: Magnetic, optical and transport properties of GaMnN films. Solid State Commun. 125, 55 2003CrossRefGoogle Scholar
20Hashimoto, M., Zhou, Y.K., Tampo, H., Kanamura, M., Asahi, H.: Magnetic and optical properties of GaMnN grown by ammonia-source molecular-beam epitaxy. J. Cryst. Growth 252, 499 2003CrossRefGoogle Scholar
21Liu, B., Bando, Y., Tang, C., Golberg, D., Yamaura, K., Muromachi, E.T.: Synthesis and magnetic study for Ga1−xMnxN whiskers. Chem. Phys. Lett. 405, 127 2005CrossRefGoogle Scholar
22Choi, J., Seong, H.K., Chang, J.Y., Lee, K.I., Park, Y.J., Kim, J.J., Lee, S.K., He, R., Kuykendall, T., Yang, P.: Single-crystalline diluted magnetic semiconductor GaN:Mn nanowires. Adv. Mater. 17, 1351 2005CrossRefGoogle ScholarPubMed
23Lee, K.H., Lee, J.Y., Jung, J.H., Kim, T.W., Jeon, H.C., Kang, T.W.: Atomic arrangements of (Ga1−xMnx)N nanorods grown on Al2O3 substrates. Appl. Phys. Lett. 92, 141919 2008CrossRefGoogle Scholar
24Fujimura, N., Nishhara, T., Goto, S., Xua, J., Ito, T.: Control of preferred orientation for ZnOx films: Control of self-texture. J. Cryst. Growth 130, 269 1993CrossRefGoogle Scholar
25Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., Yang, P.: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231 2005CrossRefGoogle ScholarPubMed
26Jeon, H.C., Kang, T.W., Kim, T.W. (unpublished),Google Scholar