Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T17:22:47.610Z Has data issue: false hasContentIssue false

Influence of vapor annealing on the thermoelectric properties of electrodeposited Bi2Te3

Published online by Cambridge University Press:  30 June 2011

Raimar Rostek*
Affiliation:
Department of Microsystems Engineering – IMTEK, University of Freiburg, 79110 Freiburg, Germany
Vladimir Sklyarenko
Affiliation:
Department of Microsystems Engineering – IMTEK, University of Freiburg, 79110 Freiburg, Germany
Peter Woias*
Affiliation:
Department of Microsystems Engineering – IMTEK, University of Freiburg, 79110 Freiburg, Germany
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

This research investigates the combination of electrochemical deposition and postdeposition vapor annealing as a method for the fabrication of Bi2Te3 layers. The galvanostatic deposition of Bi2Te3 thin films is characterized as a function of electrolyte composition and deposition-current density. Material with near-stoichiometric composition can be synthesized from electrolytes containing 20 mM Te and 30 mM Bi ions and a deposition-current density of 3.75 mA/cm2. All deposited samples show n-type behavior with Seebeck coefficients around −55 μV/K. An equilibrium annealing process in Te atmosphere is used to readjust the composition of the material after the deposition, consistently leading to tellurium-rich Bi2Te3 with a Te content of 60.4 ± 0.4 at%. At a temperature of 250 °C, an annealing duration of 60 h is sufficient for the material properties to reach a steady state, with a Seebeck coefficient of −130 μV/K.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Glatz, W., Schwyter, E., Durrer, L., and Hierold, C.: Bi2Te3-based flexible micro thermoelectric generator with optimized design. J. Microelectromech. Syst. 18, 763 (2009).CrossRefGoogle Scholar
2.Michel, S., Diliberto, S., Boulanger, C., Stein, N., and Lecuire, J.M.: Galvanostatic and potentiostatic deposition of bismuth telluride films from nitric acid solution: Effect of chemical and electrochemical parameters. J. Cryst. Growth 277, 274 (2005).CrossRefGoogle Scholar
3.Tittes, K., Bund, A., Plieth, W., Bentien, A., Paschen, S., Plotner, M., Grafe, H., and Fischer, W.: Electrochemical deposition of Bi2Te3 for thermoelectric microdevices. J. Solid State Electrochem. 7, 714 (2003).CrossRefGoogle Scholar
4.Jun, S.W., Lee, K.Y., and Oh, T.S.: Effects of hydrogen annealing on the thermoelectric properties of electrodeposited Bi2Te3 for nanowire applications. J. Kor. Phys. Soc. 48, 1708 (2006).Google Scholar
5.Kim, M.Y., Oh, T.S., and Kim, J.S.: Annealing behavior of Bi2Te3 thermoelectric semiconductor electrodeposited for nanowire applications. J. Kor. Phys. Soc. 50, 670 (2007).Google Scholar
6.Brebrick, R.F. and Scanlon, W.W.: Electrical properties and the solid-vapor equilibrium of lead sulfide. Phys. Rev. 96, 598 (1954).Google Scholar
7.Brebrick, R.F.: Homogeneity ranges and Te2-pressure along the three-phase curves for Bi2Te3(c) and a 55-58 at.% Te peritectic phase. J. Phys. Chem. Solids 30, 719 (1969).Google Scholar
8.Taylor, A., Mortensen, C., Rostek, R., Nguyen, N., and Johnson, D.: Vapor annealing as a post-processing technique to control carrier concentration of Bi2Te3 thin films. J. Electron. Mater. 39, 1981 (2010).CrossRefGoogle Scholar
9.Martin-Gonzalez, M., Prieto, A.L., Gronsky, R., Sands, T., and Stacy, A.M.: Insights into the electrodeposition of Bi2Te3. J. Electrochem. Soc. 149, C546 (2002).Google Scholar
10.Nurnus, J., Böttner, H., Beyer, H., and Lambrecht, A.: Layered (IV-VI)-(V-VI)-materials for low dimensional thermoelectric structures, in Eighteenth International Conference on Thermoelectrics, August 29–September 2, 1999, p. 704.Google Scholar
11.Li, S.H., Toprak, M.S., Soliman, H.M., Zhou, J., Muhammed, M., Platzek, D., and Müller, E.: Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition. Chem. Mater. 18, 3627 (2006).CrossRefGoogle Scholar
12.Xiao, F., Hangarter, C., Yoo, B., Rheem, Y., Lee, K.H., and Myung, N.V.: Recent progress in electrodeposition of thermoelectric thin films and nanostructures. Electrochim. Acta 53, 8103 (2008).Google Scholar
13.Heo, P., Hagiwara, K., Ichino, R., and Okido, M.: Electrodeposition and thermoelectric characterization of Bi2Te3. J. Electrochem. Soc. 153, C213 (2006).CrossRefGoogle Scholar
14.Magri, P., Boulanger, C., and Lecuire, J.M.: Synthesis, properties and performances of electrodeposited bismuth telluride films. J. Mater. Chem. 6, 773 (1996).CrossRefGoogle Scholar
15.Fleurial, J.P., Gailliard, L., Triboulet, R., Scherrer, H., and Scherrer, S.: Thermal-properties of high-quality single-crystals of bismuth telluride I: Experimental characterization. J. Phys. Chem. Solids 49, 1237 (1988).CrossRefGoogle Scholar
16.Massalski, T.B.: Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990).Google Scholar
17.Bos, J.W.G., Zandbergen, H.W., Lee, M.H., Ong, P., and Cava, R.J.: Structures and thermoelectric properties of the infinitely adaptive series (Bi2)(m)(Bi2Te3)(n). Phys. Rev. B 75, 195203 (2007).CrossRefGoogle Scholar