Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:59:00.561Z Has data issue: false hasContentIssue false

The influence of the reactant size on the micropyretic synthesis of NiAl intermetallic compounds

Published online by Cambridge University Press:  03 March 2011

H.P. Li*
Affiliation:
International Center for Micropyretics, Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
J.A. Sekhar
Affiliation:
International Center for Micropyretics, Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio 45221-0012
*
a)Present address: Jin-Wen College of Technology & Business, Hsinten, Taiwan.
Get access

Abstract

The effect of the nickel (Ni) and aluminum (Al) reactant particle size on the micropyretic synthesis of NiAl is studied in this article. A change in the low melting component (Al particle) size is noted to have a limited influence on the micropyretic synthesis conditions. However, a change in the high melting component (Ni particle) size not only influences the combustion temperature and propagation velocity, but also affects the final porosity and grain size of the synthesized products. The combustion mode is also noted to change from stable to unstable when the Ni particle size is increased. It is noted that a diffusion-type control mechanism is dominant for the rapid reaction sequence in the NiAl system. An atomistic mechanism of the Ni-Al micropyretic reaction is also proposed in this article. Following this model, analytical expressions are developed to relatc the variation of the Ni size to the NiAl formation rate with the imposed processing conditions during the micropyretic synthesis. The mechanism of the final grain formation and the grain size changes with changes in the processing variables is also discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shkiro, V. M., Doroshin, V. N., and Borovinskaya, I. P., Combust, Explos. Shock Wave 16, 370374 (1980).CrossRefGoogle Scholar
2Munir, Z. A. and Holt, J. B., J. Mater. Sci. 22, 710714 (1987).CrossRefGoogle Scholar
3Munir, Z. A. and Anselmi-Tamburini, U., Mater. Sci. Reports 3, 277365 (1989).CrossRefGoogle Scholar
4Nekrasov, E. A., Maksimov, Y. M., Ziatdinov, M. K., and Shteinberg, A. S., Combust. Explos. Shock Wave 14, 575581 (1978).CrossRefGoogle Scholar
5Lakshmikantha, M. G. and Sekhar, J. A., J. Am. Ceram. Soc. 77(1), 202210 (1994).CrossRefGoogle Scholar
6Li, H. P., Parsad, N., Liu, J., and Sekhar, J.A., in Processing and Fabrication of Advanced Materials for High Temperature Applications III, edited by Ravi, V. A., Srivatsan, T. S., and Moore, J. J. (TMS, Warrendale, PA, 1994), p. 841.Google Scholar
7Borovinskaya, I. P., Merzhanov, A. G., Novikov, N. P., and Filonenko, A. K., Combust. Explos. Shock Wave 10, 210 (1974).CrossRefGoogle Scholar
8Li, H. P. and Sekhar, J. A., in Advanced Synthesis of Engineered Structural Materials, edited by Moore, J. J., Lavernia, E. J., and Froes, F. H. (ASM INTERNATIONAL, Materials Park, OH, 1993), pp. 2533.Google Scholar
9Rice, R. W., Richardson, G. Y., Kunetz, J. M., Schroeter, T., and McDonough, W. J., Advanced Ceram. Mater. 2, 222227 (1987).CrossRefGoogle Scholar
10Li, H. P. and Sekhar, J. A., Mater. Sci. Eng. A160, 221227 (1993).CrossRefGoogle Scholar
11Li, H. P. and Sekhar, J. A., J. Mates. Res. 8, 25152523 (1993).CrossRefGoogle Scholar
12Subrahmanyam, I. and Vijayakumar, M., J. Mater. Sci. 27, 62496273 (1992).CrossRefGoogle Scholar
13Philpot, K. A., Munir, Z. A., and Holt, J. B., J. Mater. Sci. 22, 159169 (1987).CrossRefGoogle Scholar
14Sarkisyan, A. R., Dombrovska, V. K., Borovinskaya, I. P., and Merzhanov, A. G., Combust Explos. Shock Wave 14, 310 (1978).CrossRefGoogle Scholar
15Azatyan, T. S., Meltsev, V. M., Merzhanov, A. G., and Seleznev, V. A., Combust. Explos. Shock Wave 15, 35 (1979).CrossRefGoogle Scholar
16Lebrat, J. P., Varma, A., and Miller, A. E., Metall. Trans. A 23A, 6976 (1992).Google Scholar
17Rose, A., Rabin, B. H., and German, R. M., Powder Metall. Int. 20(3), 2530 (1988).Google Scholar
18Rice, R. W., J. Mater. Sci. 26, 65336541 (1991).CrossRefGoogle Scholar
19Lakshmikantha, M. G., Bhattacharya, A. K., and Sekhar, J. A., Metall. Trans. A 23A, 2333 (1992).CrossRefGoogle Scholar
20Lakshmikantha, M. G. and Sekhar, J. A., Metall. Trans. A 24A, 617627 (1993).CrossRefGoogle Scholar
21Annual Book of ASTM Standard (ASTM, Philadelphia, PA, 1989), Vol. 15.02, p. 109.Google Scholar
22Moore, J. J., in Processing and Fabrication of Advanced Materials for High Temperature Applications III, edited by Ravi, V. A., Srivatsan, T. S., and Moore, J. J. (TMS, Warrendale, PA, 1994), p. 817.Google Scholar
23Lide, D. R., CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL, 1990).Google Scholar
24Brandes, E. A. and Brook, G. B., Smithells METALS Reference Book (Butterworth & Co. Ltd., Washington, DC, 1992).Google Scholar
25Metals Handbook, Vol. 7: Powder Metallurgy (American Society for Metals, Metals Park, OH, 1985), pp. 296304.Google Scholar
26Aleksandrov, V. V., Korchagin, M. A., Tolochko, B. P., and Sheromov, M. A., Combust. Explos. Shock Waves 20, 430431 (1984).Google Scholar
27Wong, J., Larson, E. M., Holt, J. B., Waide, P. A., Rupp, B., and Frahm, R., Science 249, 14061409 (1990).CrossRefGoogle Scholar
28Ma, E., Thompson, C. V., and Clevenger, L.A., J. Appl. Phys. 69(4),22112218 (1991).CrossRefGoogle Scholar
29Aleksandrov, V. V. and Korchagin, M. A., Combust. Explos. Shock Waves 23, 557563 (1987).CrossRefGoogle Scholar
30Atzmon, M., Metall. Trans. A 23A, 4953 (1992).CrossRefGoogle Scholar
31Naiborodenko, Y. S. and Itin, V. I., Combust. Explos. Shock Waves 11, 293300 (1975).CrossRefGoogle Scholar