Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-26T03:47:45.471Z Has data issue: false hasContentIssue false

Influence of the irradiation temperature on the intracascade ion mixing

Published online by Cambridge University Press:  31 January 2011

M. Alurralde
Affiliation:
Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
A. Caro
Affiliation:
Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
M. Victoria
Affiliation:
Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland
Get access

Abstract

We present a description of the thermal behavior of cascades in Cu and Ag over a large energy range and irradiation temperatures. For this purpose the binary collision approximation, which gives the profile of the energy deposition, is coupled to a simplified version of the heat equation. In the present calculations, the original liquid drop model [M. Alurralde, A. Caro, and M. Victoria, J. Nucl. Mater. 183, 33 (1991)] has been extended to the case where the lattice is at finite temperatures. The resulting evolution of the liquid cascade is analyzed for PKA energies up to 1 MeV, and the results are compared to experimental observations of mixing rates. We obtain a temperature dependence that adds to the traditional Radiation Enhanced Diffusion, RED, in very good qualitative agreement with experiments on materials showing thermal spikes.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rubia, T. Diaz de la and Guinan, M., Phys. Rev. Lett. 66, 2766 (1991).Google Scholar
2Rubia, T. Diaz de la, Averback, R. S., Benedek, R., and King, W. E., Phys. Rev. Lett. 59, 1930 (1987).Google Scholar
3Rubia, T. Diaz de la, Averback, R. S., Hsieh, H., and Benedek, R., J. Mater. Res. 4, 579 (1989).Google Scholar
4Hsieh, H., Rubia, T. Diaz de la, Averback, R. S., and Benedek, R., Phys. Rev. B 40, 9986 (1989).Google Scholar
5Caro, M., Ardelea, A., and Caro, A., J. Mater. Res. 5, 2652 (1990).Google Scholar
6Alurralde, M., Caro, A., and Victoria, M., J. Nucl. Mater. 183, 33 (1991).CrossRefGoogle Scholar
7Vineyard, G. H., Radiat. Eff. 29, 245 (1976).CrossRefGoogle Scholar
8Sanders, J.B., Radiat. Eff. 51, 43 (1980)CrossRefGoogle Scholar
Peak, D. and Averback, R.S., Nucl. Instrum. Methods B 78, 561 (1985).Google Scholar
9Robinson, M.T. and Torrens, I.M., Phys. Rev. B 9, 5008 (1974).Google Scholar
10Rehn, L.E. and Okamoto, P. R., Nucl. Instrum. Methods B 39, 104 (1989).Google Scholar
11Shreter, U., So, F.C.T., Paine, B.M., and Nicolet, M.A., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G.K., Holland, O.W., Clayton, C.R., and White, C.W. (Mater. Res. Soc. Symp. Proc. 27, Elsevier Science Publishing, New York, 1984), p. 31.Google Scholar
12Rossi, F., Nastasi, M., Cohen, M., Olsen, C., Tesmer, J. R., and Egert, C., J. Mater. Res. 6, 1175 (1991).CrossRefGoogle Scholar
13Priolo, F., Poate, J.M., Jacobson, D. C., Linnros, J., Batstone, J. L., and Campisano, S. U., in Fundamentals of Beam-Solid Interactions and Transient Thermal Processing, edited by Aziz, M. J., Rehn, L. E., and Stritzker, B. (Mater. Res. Soc. Symp. Proc. 100, Pittsburgh, PA, 1988), p. 87.Google Scholar
14Ding, F. R., Averback, R. S., and Hahn, H., J. Appl. Phys. 64, 1785 (1988).CrossRefGoogle Scholar
15Averback, R. S., Peak, D., and Thompson, L. J., Appl. Phys. A 39, 59 (1986).Google Scholar
16Johnson, W.L., Chen, Y.T., Rossum, M. van, and Nicolet, M.A., Nucl. Instrum. Methods B 78, 657 (1985).Google Scholar