Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T18:10:10.425Z Has data issue: false hasContentIssue false

Influence of substitutional nitrogen in synthetic saw-grade diamond on crystal strength

Published online by Cambridge University Press:  31 January 2011

W. E. Jackson
Affiliation:
GE Superabrasives, 6325 Huntley Road, Worthington, Ohio 43085
Steven W. Webb
Affiliation:
GE Superabrasives, 6325 Huntley Road, Worthington, Ohio 43085
Get access

Abstract

The amount and defect type of substitutional nitrogen in synthetic diamond strongly influences crystal strength. There is an optimum amount of nitrogen that yields the highest compressive fracture strength for crystals derived from common growth conditions. It is postulated that the role of nitrogen is to charge-balance vacancies created during growth. If too little nitrogen exists in the diamond, vacancies are not charge-balanced and may serve as crack initiation and/or propagation sites. Excess nitrogen above that required to charge-balance vacancies may weaken the lattice by adding local strain to the crystal. IR microscopy indicates that most of the substitutional nitrogen in synthetic diamond is increased in the vicinity of the intersections of growth sectors on the crystal surface. Most surface IR-visible nitrogen is biased toward the (111)–(100) intersection. The bias in incorporation of substitutional nitrogen at external growth sector intersections (i.e., edges and corners) of an industrial high-grade saw diamond crystal influences the progression of fatigue by microfracture during cutting of hard stone.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Baker, J. M. and Newton, M. E., Appl. Mag. Reson. 8, 207228 (1995).Google Scholar
2.Woods, G. S. and Lang, A. R., J. Cryst. Growth 28, 215226 (1975).CrossRefGoogle Scholar
3.Brookes, E. J., Collins, A. T., and Woods, G. S., J. Hard Mater. 4, 97105 (1993).Google Scholar
4.Woods, G. S., Van Wyk, J. A., and Collins, A. T., Philos. Mag. B 62 (6), 589595 (1990); I. Kiflawi, A. E. Mayer, P. M. Spear, J. A. van Wyk, and G. S. Woods, Philos. Mag. B 69, 1141–1147 (1994).Google Scholar
5.Davies, G., J. Phys. C 9, L537541 (1976).Google Scholar
6.Collins, A. T., Stanley, M., and Woods, G. S., J. Phys. D 20, 969974 (1987).CrossRefGoogle Scholar
7.Webb, S. W. and Jackson, W. E., J. Mater. Res. 10, 17001709 (1995).Google Scholar
8.Collins, A. T., J. Phys. C 13, 26412650 (1980).CrossRefGoogle Scholar
9.Klyuev, Y. A., Naletov, A. M., Nepsha, V. I., Belimenko, L. D., Laptev, V. A., and Samolilovich, I. M., J. Phys. Chem. 56 (3), 323325 (1982).Google Scholar
10.Evans, T. and Qui, Z., Proc. R. Soc. London A381, 159178 (1982).Google Scholar
11.Collins, A. T. and Stanley, M., J. Phys. D. 18, 25372545 (1985).CrossRefGoogle Scholar
12.Furusawa, M. and Ikeya, M., J. Phys. Soc. Jpn. 59 (7), 23402342 (1990).Google Scholar
13.Kanda, H. and Yamaoka, S., Diamond and Related Mater. 2, 14201423 (1993).Google Scholar
14.Bokii, G. B., Kirova, N. F., and Nepsha, V. I., Sov. Phys. Dokl. 24 (2), 83 (1979).Google Scholar
15.Tsuzuki, A., Hirano, S., and Naka, S., J. Mater. Sci. 20, 22602264 (1985).Google Scholar
16.Field, J. E., The Properties of Natural and Synthetic Diamond (Academic Press, San Diego, CA, 1992).Google Scholar
17.Evans, T., Contemp. Phys. 17, 4570 (1976).Google Scholar
18.Klyuev, Y. A., Nepsha, V. I., and Naletov, A. M., Sov. Phys. Solid State 16, 21182126 (1974).Google Scholar
19.Burns, R. C., Cvetkovic, V., Dodge, C. N., Evans, D. J. F., Rooney, M. T., Spear, P. M., and Welcourn, C. M., J. Cryst. Growth 104, 257279 (1990).CrossRefGoogle Scholar