Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T20:50:52.517Z Has data issue: false hasContentIssue false

Influence of selective laser melting scanning speed parameter on the surface morphology, surface roughness, and micropores for manufactured Ti6Al4V parts

Published online by Cambridge University Press:  26 May 2020

Mohd Faizal Sadali*
Affiliation:
Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
Mohamad Zaki Hassan*
Affiliation:
Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
Fauzan Ahmad
Affiliation:
Malaysian Japanese International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
Hafizal Yahaya
Affiliation:
Malaysian Japanese International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
Zainudin A Rasid
Affiliation:
Malaysian Japanese International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur 54100, Malaysia
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Selective laser melting (SLM) is a state-of-the-art technology in the additive manufacturing field. This study focuses on the influence of scanning speed on the fabrication of Ti6Al4V samples produced by SLM. This article contributes to the effect of SLM scanning speed parameters on micropores, surface morphology, and roughness. The detailed characterizations for the parts produced by the SLM process are evaluated. An SLM scanning speed of 695, 775, or 853 mm/s was selected. The findings show that a high quality of surface morphology and microstructure is obtained at a scanning speed of 775 mm/s. In addition, the maximum surface roughness values for both upper and side surfaces are approximately 0.460 µm and 0.592 µm, respectively. Furthermore, surface defect characteristics regarding the speed mechanism parameter for the SLM system are also discussed, and the challenges to the part quality, and potential for numerous industries (e.g., aerospace, automotive, and biomedical), creating microstructures, are observed.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carter, L.N., Martin, C., Withers, P.J., and Attallah, M.M.: The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J. Alloys Compd. 615, 338347 (2014).10.1016/j.jallcom.2014.06.172CrossRefGoogle Scholar
Kadirgama, K., Harun, W.S.W., Tarlochan, F., Samykano, M., Ramasamy, D., Azir, M.Z., and Mehboob, H.: Statistical and optimize of lattice structures with selective laser melting (SLM) of Ti6AL4V material. Int. J. Adv. Manuf. Technol. 97, 495510 (2018).10.1007/s00170-018-1913-1CrossRefGoogle Scholar
Sadali, M.F.: Développement durable sur la production des alliages métalliques utilisés dans l'aéronautique (fabrication additive): Etudier les différents procédés de fabrication additive en vue de les modéliser sur une pièce réaliste et d'évaluer les impacts environnementaux, ainsi qu'économiques, de ces procédés (University Franche-Comté, Besançon, France, 2015).Google Scholar
E. ISO: 4287–Geometrical Product Specifications (GPS)–Surface Texture: Profile Method–Terms, Definitions and Surface Texture Parameters (International Organization for Standardization, Geneva, Switzerland, 1997).Google Scholar
Klocke, F., Wagner, C., and Ader, C.: Development of an integrated model for selective laser sintering. CIRP Int. Seminar Manuf. Syst., Saarbrücken. 60, 8792 (2003).Google Scholar
Taylor, C., Childs, T., and Hauser, C.: Morphology of direct SLS-processed stainless steel layers. In 13th SFF Symposium, Vol. 61 (Texas Scholar Work, Texas, 2002); pp. 644655.Google Scholar
Yadroitsev, I. and Bertrand, P.: Selective Laser Melting in Micro Manufacturing (DAAAM International, Vienna, Austria, 2010); p. 21.Google Scholar
Childs, T., Hauser, C., and Badrossamay, M.: Mapping and modelling single scan track formation in direct metal selective laser melting. CIRP Ann. 53, 191194 (2004).10.1016/S0007-8506(07)60676-3CrossRefGoogle Scholar
Rombouts, M.: Selective laser sintering/melting of iron-based powders (selectief laser sinteren/smelten van ijzergebaseerde poeders). Mater. Sci. 9, 105107 (2006).Google Scholar
Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B.: Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. 1, 8798 (2014).Google Scholar
Maamoun, A.H., Xue, Y.F., Elbestawi, M.A., and Veldhuis, S.C.: Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy. Materials 11: 171194 (2018).10.3390/ma11122343CrossRefGoogle ScholarPubMed
Enneti, R.K., Morgan, R., and Atre, S.V.: Effect of process parameters on the selective laser melting (SLM) of tungsten. Int. J. Refract. Met. Hard Mater. 71, 315319 (2018).10.1016/j.ijrmhm.2017.11.035CrossRefGoogle Scholar
Xiong, W., Hao, L., Li, Y., Tang, D., Cui, Q., Feng, Z., and Yan, C.: Effect of selective laser melting parameters on morphology, microstructure, densification, and mechanical properties of supersaturated silver alloy. Mater. Des. 170, 212 (2019).10.1016/j.matdes.2019.107697CrossRefGoogle Scholar
Song, B., Dong, S., Zhang, B., Liao, H., and Coddet, C.: Effects of processing parameters on microstructure and mechanical property of selective laser melted Ti6Al4V. Mater. Des. 35, 120125 (2012).10.1016/j.matdes.2011.09.051CrossRefGoogle Scholar
Attar, H., Bonish, M., Calin, M., Zhang, L.C., Scudino, S., and Eckert, J.: Selective laser melting of in situ titanium-titanium boride composites: Processing, microstructure, and mechanical properties. Acta Mater. 76, 1322 (2014).10.1016/j.actamat.2014.05.022CrossRefGoogle Scholar
Gu, D., Hagedorn, Y.C., Meiners, W., Meng, G., Batista, R.J.S., Wissenbach, K., and Poprawe, R.: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 38493860 (2012).10.1016/j.actamat.2012.04.006CrossRefGoogle Scholar
Yadroitsev, I., Krakhmalev, P., Yadroitsava, I., and Smurov, I.: Energy input effect on morphology and microstructure of selective laser melting single track from metallic powder. J. Mater. Process. Technol. 213, 606613 (2013).10.1016/j.jmatprotec.2012.11.014CrossRefGoogle Scholar
Wang, D., Dou, W., and Yang, Y.: Research on selective laser melting of Ti6Al4V: Surface morphologies, optimized processing zone, and ductility improvement mechanism. Metals 8, 471 (2018).10.3390/met8070471CrossRefGoogle Scholar
Wang, D., Wu, S., Fu, F., Mai, S., Yang, Y., Liu, Y., and Song, C.: Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Mater. Des. 117, 121130 (2017).10.1016/j.matdes.2016.12.060CrossRefGoogle Scholar
Brandl, E., Schoberth, A., and Leyens, C.: Morphology, microstructure, and hardness of titanium (Ti–6Al–4V) blocks deposited by wire-feed additive layer manufacturing (ALM). Mater. Sci. Eng., A 532, 295307 (2012).10.1016/j.msea.2011.10.095CrossRefGoogle Scholar
Osakada, K. and Shiomi, M.: Flexible manufacturing of metallic products by selective laser melting of powder. Int. J. Mach. Tool Manufact. 46, 11881193 (2006).10.1016/j.ijmachtools.2006.01.024CrossRefGoogle Scholar
Dahotre, N.B. and Harimkar, S.: Laser Fabrication and Machining of Materials (Springer Science + Business Media, New York, 2008).Google Scholar
Krakhmalev, P., Fredriksson, G., Yadroitsava, I., Kazantseva, N., Du Plessis, A., and Yadroitsev, I.: Deformation behavior and microstructure of Ti6Al4V manufactured by SLM. Phys. Procedia 83, 778788 (2016).10.1016/j.phpro.2016.08.080CrossRefGoogle Scholar
Zhou, X., Liu, X., Zhang, D., Sheng, Z., and Liu, W.: Balling phenomena in selective laser melted tungsten. J. Mater. Process. Technol. 222, 3342 (2015).10.1016/j.jmatprotec.2015.02.032CrossRefGoogle Scholar
Gibson, I., Rosen, D.W., and Stucker, B.: Design for additive manufacturing. In Additive Manufacturing Technologies (Springer, Boston, MA, 2010); pp. 299332.10.1007/978-1-4419-1120-9_11CrossRefGoogle Scholar
Kyogoku, H., Shimizu, Y., and Yoshikawa, K.: Surface morphology of selective laser-melted titanium. In International Solid Freeform Fabrication Symposium Austin, Texas, Vol. 12 (Texas Scholar Work, Texas, 2013); pp. 846852.Google Scholar
Liu, J., Gu, D., Hong, Y., Dai, D., and Zhang, H.: Influence of substrate surface morphology on wetting behavior of tracks during selective laser melting of aluminum-based alloys. J. Zhejiang Univ., Sci., A 19, 111121 (2018).CrossRefGoogle Scholar
Cardaropoli, F., Alfieri, V., Caiazzo, F., and Sergi, V.: Manufacturing of porous biomaterials for dental implant applications through selective laser melting. In Advanced Materials Research, Kyogoku, ed. (Trans Tech Publications, Austin, Texas, 2012); pp. 12221229.Google Scholar
Hazlehurst, K.B., Wang, C.J., and Stanford, M.: An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Mater. Des. 60, 177183 (2014).CrossRefGoogle Scholar
Yadroitsev, I. and Smurov, I.: Surface morphology in selective laser melting of metal powders. Phys. Procedia 12, 264270 (2011).CrossRefGoogle Scholar
Gu, D. and Shen, Y.: Balling phenomena during direct laser sintering of multi-component Cu-based metal powder. J. Alloys Comp. 432, 163166 (2007).CrossRefGoogle Scholar
Haboudou, A., Peyre, P., Vannes, A.B., and Peix, G.: Reduction of porosity content generated during Nd: YAG laser welding of A356 and AA5083 aluminium alloys. Mater. Sci. Eng., A 363, 4052 (2003).10.1016/S0921-5093(03)00637-3CrossRefGoogle Scholar
Xiao, R. and Zhang, X.: Problems and issues in laser beam welding of aluminum–lithium alloys. J. Manuf. Process. 16, 166175 (2014).10.1016/j.jmapro.2013.10.005CrossRefGoogle Scholar
Kruth, J.P., Mercelis, P., Van, V.J., Froyen, L., and Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11, 2636 (2005).CrossRefGoogle Scholar
Matras, A.: Research and optimization of surface roughness in milling of SLM semi-finished parts manufactured by using the different laser scanning speed. Materials 13: 110 (2020).Google Scholar
Sun, J., Yang, Y., and Wang, D.: Mechanical properties of a Ti6Al4V porous structure produced by selective laser melting. Mater. Des. 49, 545552 (2013).CrossRefGoogle Scholar
Yadroitsev, I., Yadroitsava, I., Bertrand, P., and Smurov, I.: Factor analysis of selective laser melting process parameters and geometrical characteristics of synthesized single tracks. Rapid Prototyp. J. 18, 201208 (2012).10.1108/13552541211218117CrossRefGoogle Scholar
Yasa, E., Deckers, J., and Kruth, J.P.: The investigation of the influence of laser re-melting on density, surface quality and microstructure of selective laser melting parts. Rapid Prototyp. J. 17, 312327 (2011).10.1108/13552541111156450CrossRefGoogle Scholar
Sadali, M.F., Hassan, M.Z., Ahmad, N.H., Yahya, H., and Nor, A.F.M.: Effect of hatching distance on surface morphology and surface roughness of the Ti6Al4V for biomedical implant using SLM process. Malaysian J. Mcs. 15, 7282 (2019).Google Scholar
Gong, H., Rafi, K., Gu, H., Ram, G.D.J., Starr, T., and Stucker, B.: Influence of defects on mechanical properties of Ti–6Al–4V components produced by selective laser melting and electron beam melting. Mater. Des. 86, 545554 (2015).CrossRefGoogle Scholar