Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T11:04:15.771Z Has data issue: false hasContentIssue false

Influence of sample thickness and experimental device configuration on the spherical indentation of AISI 1095 steel

Published online by Cambridge University Press:  17 October 2011

Philippe Brammer*
Affiliation:
L.A.R.M.A.U.R-Indentation, E.A. 42.82, Université de Rennes 1, Campus de Beaulieu, 35402 Rennes Cedex, France; and Technocentre Renault, Research Advanced Studies and Materials Engineering (DREAM) – Material Engineering Department (DIMat), 78288 Guyancourt Cedex, France
Gérard Mauvoisin
Affiliation:
L.A.R.M.A.U.R-Indentation, E.A. 42.82, Université de Rennes 1, Campus de Beaulieu, 35402 Rennes Cedex, France
Olivier Bartier
Affiliation:
L.A.R.M.A.U.R-Indentation, E.A. 42.82, Université de Rennes 1, Campus de Beaulieu, 35402 Rennes Cedex, France
Xavier Hernot
Affiliation:
L.A.R.M.A.U.R-Indentation, E.A. 42.82, Université de Rennes 1, Campus de Beaulieu, 35402 Rennes Cedex, France
Simon-Serge Sablin
Affiliation:
Technocentre Renault, Research Advanced Studies and Materials Engineering (DREAM) – Material Engineering Department (DIMat), 78288 Guyancourt Cedex, France
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Most instrumented indentation theoretical studies and models consider bulk sample geometry, which implies no influence on the indentation response. In the particular case of thin samples, our previous studies have shown that the thickness has an influence on the experimental device behavior as well as on the sample and material response. This work is a numerical and experimental illustration of this particularity. Spherical macroindentation tests are performed on AISI 1095 steel samples of thicknesses varying from 0.55 to 10 mm. Experimental and numerical results are compared. Experimental limitations are investigated, and solutions to obtain results that are independent of the sample thickness and curvature are proposed. We show that the proposed solution leads to a reliable identification of the material mechanical properties of thin and moderately bent samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cheng, Y-T. and Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. Rep. 44, 91 (2004).CrossRefGoogle Scholar
2.Chen, X., Ogasawara, N., Zhaov, M., and Chiba, N.: On the uniqueness of measuring elastoplastic properties from indentation: The indistinguishable mystical materials. J. Mech. Phys. Solids 55, 1618 (2007).CrossRefGoogle Scholar
3.Kucharski, S. and Mröz, Z.: Identification of plastic hardening parameters of metals from spherical indentation tests. Mater. Sci. Eng., A 318, 65 (2001).CrossRefGoogle Scholar
4.Cao, Y-P. and Lu, J.: A new method to extract the plastic properties of metal materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 (2004).CrossRefGoogle Scholar
5.Lee, H., Lee, J.H., and Pharr, G.M.: A numerical approach to spherical indentation techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037 (2005).CrossRefGoogle Scholar
6.Lee, J.H., Kim, T., and Lee, H.: A study on robust indentation techniques to evaluate elastic-plastic properties of metals. Int. J. Solids Struct. 47, 647 (2010).CrossRefGoogle Scholar
7.Beghini, M., Bertini, L., and Fontanari, V.: Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441 (2006).CrossRefGoogle Scholar
8.Zhao, M., Ogasawara, N., Chiba, N., and Chen, X-A.: New approach to measure the elastic–plastic properties of bulk materials using spherical indentation. Acta Mater. 54, 23 (2006).CrossRefGoogle Scholar
9.Cao, Y., Qian, X., and Huber, N.: Spherical indentation into elastoplastic materials: Indentation-response based definitions of the representative strain. Mater. Sci. Eng., A 454, 1 (2007).CrossRefGoogle Scholar
10.Collin, J-M., Mauvoisin, G., Bartier, O., El Abdi, R., and Pilvin, P.: Experimental evaluation of the stress–strain curve by continuous indentation using different indenter shapes. Mater. Sci. Eng., A 501, 140 (2009).CrossRefGoogle Scholar
11.Collin, J-M., Parenteau, T., Mauvoisin, G., and Pilvin, P.: Material parameters identification using experimental continuous indentation for cyclic hardening. Comput. Mater. Sci. 46, 333 (2009).CrossRefGoogle Scholar
12.Collin, J-M., Mauvoisin, G., and Pilvin, P.: Materials characterization by instrumented indentation using two different approaches. Mater. Des. 31, 636 (2010).CrossRefGoogle Scholar
13.Jiang, P., Zhang, T-H., Feng, Y-H., and Liang, N-G.: Determination of plastic properties by instrumented spherical indentation: Expanding cavity model and similarity solution approach. J. Mater. Res. 24, 1045 (2009).CrossRefGoogle Scholar
14.Ogasawara, N., Chiba, N., and Chen, X.: A simple framework of spherical indentation for measuring elastoplastic properties. Mech. Mater. 41, 1025 (2009).CrossRefGoogle Scholar
15.Nayebi, A., Bartier, O., Mauvoisin, G., and El Abdi, R.: New method to determine the mechanical properties of heat treated steels. Int. J. Mech. Sci. 43, 2679 (2001).CrossRefGoogle Scholar
16.Nayebi, A., El Abdi, R., Bartier, O., and Mauvoisin, G.: Hardness profile analysis of elasto-plastic heat-treated steels with a gradient in yield strength. Mater. Sci. Eng., A 333, 160 (2002).CrossRefGoogle Scholar
17.Nayebi, A., El Abdi, R., Bartier, O., and Mauvoisin, G.: New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech. Mater. 34, 243 (2002).CrossRefGoogle Scholar
18.Bocciarelli, M., Bolzon, G., and Maier, G.: Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping. Mech. Mater. 37, 855 (2005).CrossRefGoogle Scholar
19.Yonezu, A., Yoneda, K., Hirakata, H., Sakihara, M., and Minoshima, K.: A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spherical indentation – Application to SiC whisker-reinforced aluminium alloy. Mater. Sci. Eng. A 527, 7646 (2010).CrossRefGoogle Scholar
20.Chung, K-H., Lee, W., Kim, J-H., Kim, C., Park, S-H., Kwon, D., and Chung, K.: Characterization of mechanical properties by indentation tests and FE analysis – validation by application to a weld zone of DP590 steel. Int. J. Solids Struct. 46, 344 (2009).CrossRefGoogle Scholar
21.Yang, F.: Thickness effect on the indentation of an elastic layer. Mater. Sci. Eng., A 358, 226 (2003).CrossRefGoogle Scholar
22.Largeau, L., Patriarche, G., Rivière, A., Rivière, J.P., and Le Bourhis, E.: Indentation punching through thin (011) InP. J. Mater. Sci. 39, 943 (2004).CrossRefGoogle Scholar
23.Patriarche, G., Largeau, L., Rivière, J. P. and Le Bourhis, E.: Vickers indentation of thin GaAs (001) samples. Philos. Mag. 84, 3281 (2004).CrossRefGoogle Scholar
24.Hertz, H.: Uber die Berührung festischer Körper. J. Reine Angew. Math. 92, 156 (1881).Google Scholar