Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T11:57:53.640Z Has data issue: false hasContentIssue false

Influence of processing on the microstructure and mechanical properties of a NbAl3-base alloy

Published online by Cambridge University Press:  31 January 2011

Mohan G. Hebsur
Affiliation:
Sverdrup Technology Inc., LeRC Group, Brook Park, Ohio 44142
Ivan E. Locci
Affiliation:
NASA-Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
S.V. Raj
Affiliation:
NASA-Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
Michael V. Nathal
Affiliation:
NASA-Lewis Research Center, 21000 Brookpark Road, Cleveland, Ohio 44135
Get access

Abstract

A multiphase oxidation resistant composition (Nb–67Al–7Cr–0.5Y–0.25W) based on NbAl3 was prepared by both induction melting and rapid solidification processing (RSP), followed by grinding to 75 μm powder and consolidating by powder metallurgy techniques (hot pressing, hot isostatic pressing, and Ceracon pressing). Constant strain rate compression tests conducted on consolidated materials in the temperature range 300–1300 K indicated that the RSP material exhibited significantly higher strength and ductility than the induction melted alloy up to 1200 K. Bend strengths measured on induction melted material were significantly lower than the corresponding compressive strengths, suggesting the brittle, flaw-sensitive nature of this alloy. The NbAlCrYW alloy exhibits a brittle-to-ductile transition around 1000 K. The constant load creep tests conducted on the induction melted alloy in the 1200–1300 K temperature range indicated that this alloy shows a power law creep dependency with a stress exponent, n, of 3.2. It was found that the specific strength of this alloy is competitive with other aluminide intermetallics.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Svedburg, R. C., in Properties of High Temperature Alloys, edited by Foroulis, Z. A. and Pettit, F. S. (Electrochemical Society, Pennington, NJ, 1976), pp. 331362.Google Scholar
2.Perkins, R. A., Chiang, K. T., and Meier, G. H., Scripta Metall. 22, 419 (1988).Google Scholar
3.Hebsur, M. G., Stephens, J. R., Smialek, J. L., Barrett, C. A., and Fox, D. S., in Oxidation of High Temperature Intermetallics, edited by Grobestein, T. and Doychak, J. (TMS, Warrendale, PA, 1989), pp. 171184.Google Scholar
4.Hebsur, M. G. and Stephens, J. R., U.S. Patent No. 4983 358 (1991).Google Scholar
5.Doychak, J. and Hebsur, M. G., Oxid. Metals 36, 113 (1991).CrossRefGoogle Scholar
6.Barrett, C. A., Oxid. Metals 30, 56, 361 (1988).CrossRefGoogle Scholar
7.Schneibel, J. H., Becher, P. F., and Horton, J. A., J. Mater. Res. 3, 1272 (1988).Google Scholar
8.Jech, R. W., Moore, T. J., Glasgow, T. K., and Orth, N. W., J. Metals 36, 41 (1984).Google Scholar
9.Gaspar, T. A. and Hackman, L. E.: in Proc. 6th World Conf. on Titanium, Cannes (France), edited by Lacombe, P., Tricot, A., and Beranger, G. (1988), pp. 739743.Google Scholar
10.Hebsur, M. G. and Locci, I. E.: Proc. 2nd Int. Conf. on Rapidly Solidified Materials, 1988, San Diego, CA, edited by Lee, P. W. and Moll, J. H. (ASM, Metals Park, OH, 1988), pp. 6774.Google Scholar
11.Raman, R. S., Adv. Mater. Process. 137, 109110 (1990).Google Scholar
12.Ferguson, B. L. and Smith, O. D., Metals Handbook, 9th ed., 7, 543 (1983).Google Scholar
13.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM, Metals Park, OH, 1985), Vol. 2, p. 939.Google Scholar
14.Massalski, T. B., ed.-in-chief, Binary Phase Diagrams (ASM, Metals Park, OH, 1986), Vol. 1.Google Scholar
15.Weertman, J., J. Appl. Phys. 28, 1185 (1957).CrossRefGoogle Scholar
16.Mohamed, F. A. and Langdon, T. G., Acta Metall. 22, 779 (1974).CrossRefGoogle Scholar
17.Mohamed, F. A., Mater. Sci. Eng. 61, 149 (1983).Google Scholar
18.Jung, I. and Sauthoff, G., Z. Metalk. 80, 490 (1989).Google Scholar
19.Shechtman, D. and Jacobson, L. A., Metall. Trans. 6A, 1325 (1975).Google Scholar
20.Vandershaeve, G., Sarrazin, T., and Escaig, B., Acta Metall. 27, 1251 (1979).Google Scholar
21.Yamaguchi, M., Umakoshi, Y., and Yamane, T., Philos. Mag. A 55, 301 (1986).CrossRefGoogle Scholar
22.Noebe, R. D., Bowman, R. R., Locci, I. E., and Raj, S. V., HITEMP Review, 1989: Advanced High Temperature Engine Materials Technology Program, NASA-CP 10039, 48–1 (1989).Google Scholar
23.DiPietro, M. S., Kumar, K. S., and Whittenberger, J. D., J. Mater. Res. 6, 530 (1991).CrossRefGoogle Scholar
24.Stephens, J. R. and Nathal, M. V., in Superalloys 1988, edited by Reichman, S., Duhl, D. N., Maurer, G., Antolovich, S., and Lund, C. (TMS, Warrendale, PA, 1988), pp. 183191.Google Scholar
25.Noebe, R. D., Bowman, R. R., and Eldrige, J. F., in Intermetallic Matrix Composites, edited by Anton, D. L., Martin, P. L., Miracle, D. B., and McMeeking, R. (Mater. Res. Soc. Symp. Proc. 194, Pittsburgh, PA, 1990), pp. 323331.Google Scholar
26.Kumar, K. S., DiPietro, M. S., Brown, S. A., and Whittenberger, J. D., NASA TM-103724 (1991).Google Scholar
27.Meschter, P. J., unpublished research.Google Scholar
28.Raj, S. V. and Farmer, S., unpublished research.Google Scholar
29.Brown, S. A., Kumar, K. S., and Whittenberger, J. D., Scripta Metall. Mater. 24, 201 (1990).Google Scholar
30.Nathal, M. V. and Ebert, L. J., Metall. Trans. 16A, 427 (1985).CrossRefGoogle Scholar