Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T08:50:13.724Z Has data issue: false hasContentIssue false

Influence of oxygen deficiency on the out-of-plane tilt of epitaxial Y2O3 films on Ni–5%W tapes

Published online by Cambridge University Press:  31 January 2011

A. Goyal*
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
M. Rupich
Affiliation:
American Superconductor Corporation, Westborough, Massachusetts 01581
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We analyzed the crystallographic c-axis tilt of (001) Y2O3 films grown on biaxially textured Ni–5%W tapes under different oxygen flux conditions. Results show that different tilting mechanisms were effective in films with different oxygen stoichiometry. Moreover, the structure of the film/substrate interface investigated by transmission electron microscopy, and the residual strain of the film investigated by x-ray diffraction were also dependent on the film oxygen content. Although the oxygen stoichiometric Y2O3 sample exhibited a coherent film/substrate interface and the sharpest out-of-plane texture, the films grown under reduced oxygen pressure exhibited a smaller overall c-axis tilt due to formation of interface dislocations and regions in which the film oxygen vacancies ordered to form a lattice superstructure.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goyal, A., Paranthaman, M., Schoop, U.: The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, (8)552 (2004)Google Scholar
2.Specht, E.D., List, F.A., Lee, D.F., More, K.L., Goyal, A., Robbins, W.B., O'Neill, D.: Uniform texture in meter-long YBa2Cu3O7 tape. Physica C 382, 342 (2002)CrossRefGoogle Scholar
3.Riesz, F.: Crystallographic tilting in high-misfit (100) semiconductor heteroepitaxial systems. J. Vac. Sci. Technol., A 14, 425 (1996)CrossRefGoogle Scholar
4.Nagai, H.: Structure of vapor-deposited GaxIn1–xAs crystals. J. Appl. Phys. 45, 3789 (1974)CrossRefGoogle Scholar
5.Olsen, G.H., Smith, R.T.: Misorientation and tetragonal distortion in heteroepitaxial vapor-grown III-V Structures. Phys. Status Solidi A 31, 739 (1975)CrossRefGoogle Scholar
6.Ayers, J.E., Ghandhi, S.K., Schowalter, L.J.: Crystallographic tilting of heteroepitaxial layers. J. Cryst. Growth 113, 430 (1991)CrossRefGoogle Scholar
7.Budai, J.D., Yang, W., Tamura, N., Chung, J., Tischler, J.Z., Larson, B.C., Ice, G.E., Park, C., Norton, D.P.: X-ray microdiffraction study of growth modes and crystallographic tilts in oxide films on metal substrates. Nat. Mater. 2, 487 (2003)CrossRefGoogle ScholarPubMed
8.Cantoni, C., Goyal, A., Schoop, U., Li, X., Rupich, M.W., Thieme, C., Gapud, A.A., Kodenkandath, T., Aytug, T., Paranthaman, M., Kim, K., Budai, J.D., Christen, D.K.: Investigation of TiN seed layers for RABiTS architectures with a single-crystal-like out-of-plane texture. IEEE Trans. Appl. Supercond. 15, 2981 (2005)CrossRefGoogle Scholar
9.Brauer, G., Gingerich, K.A.: Oxides of cerium—V. High-temperature x-ray diffraction examination of cerium oxide. J. Inorg. Nucl. Chem. 16, 87 (1960)Google Scholar
10.Brauer, G., Gingerich, K.A., Holtschmidt, U.: Oxides of cerium—IV. Oxygen dissociation pressure in the cerium oxide system. J. Inorg. Nucl. Chem. 16, 77 (1960)Google Scholar
11.Jollet, F., Noguera, C., Gautier, M., Thromat, N., Duraud, J.: Influence of oxygen vacancies on the electronic structure of yttrium oxide. J. Am. Ceram. Soc. 74, 358 (1991)Google Scholar
12.Duraud, J., Jollet, F., Thromat, N., Gautier, M., Maire, P., le Gressus, C.: Nonstoichiometry in pure and Zr-doped yttria ceramics: An EXAFS and XPS study. J. Am. Ceram. Soc. 73, 2467 (1990)CrossRefGoogle Scholar
13.Fantozzi, G., Orange, G., Liang, K., Gautier, M., Maire, P., le Gressus, C.: Effect of nonstoichiometry on fracture toughness and hardness of yttrium oxide. J. Am. Ceram. Soc. 72, 1562 (1989)CrossRefGoogle Scholar
14.Travlos, A., Boukos, N., Apostolopoulos, G., Dimoulas, A., Giannakopoulos, C.: EELS study of oxygen superstructure in epitaxial Y2O3 layers. Mater. Sci. Eng., B 109, 52 (2004)Google Scholar
15.Dimoulas, A., Travlos, A., Vellianitis, G., Boukos, N., Argyropoulos, K.: Direct heteroepitaxy of crystalline Y2O3 on Si (001) for high-k gate dielectric applications. J. Appl. Phys. 90, 4224 (2001)CrossRefGoogle Scholar
16.Specht, E.D., Goyal, A., Lee, D.F., List, F.A., Kroeger, D.M., Paranthaman, M., Williams, R.K., Christen, D.K.: Cube-textured nickel substrates for high-temperature superconductors. Supercond. Sci. Technol. 11, 945 (1998)Google Scholar
17.Cantoni, C., Christen, D.K., Feenstra, R., Norton, D.P., Goyal, A., Ownby, G.W., Zehner, D.M.: Reflection high-energy electron diffraction studies of epitaxial oxide seed-layer growth on rolling-assisted biaxially textured substrate Ni(001): The role of surface structure and chemistry. Appl. Phys. Lett. 79, 3077 (2001)Google Scholar
18.Cantoni, C., Christen, D.K., Heatherly, L., Kowalewski, M.M., List, F.A., Goyal, A., Ownby, G.W., Zehner, D.M., Kang, B.W., Kroeger, D.M.: Quantification and control of the sulfur c (2 × 2) superstructure on {100}<100> Ni for optimization of YSZ, CeO2 and SrTiO3 seed layers texture. J. Mater. Res. 17, 2549 (2002)CrossRefGoogle Scholar