Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T02:36:14.177Z Has data issue: false hasContentIssue false

Influence of Mo content on the phase evolution and corrosion behavior of model Fe–9Cr–xMo (x = 5, 7, and 9 wt%) alloys

Published online by Cambridge University Press:  05 June 2015

Marcelo J. Gomes da Silva*
Affiliation:
Departamento de Engenharia Metalúrgica e Materiais, Centro de Tecnologia, Universidade Federal do Ceará Campus do Pici, bloco 729, Fortaleza 60440-900, Ceará, Brazil
Luis F.G. Herculano
Affiliation:
Departamento de Engenharia Metalúrgica e Materiais, Centro de Tecnologia, Universidade Federal do Ceará Campus do Pici, bloco 729, Fortaleza 60440-900, Ceará, Brazil
Amanda S.C. Urcezino
Affiliation:
Departamento de Química Analítica e Físico Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, bloco 940, Fortaleza 60440-900, Ceará, Brazil
Walney S. Araújo
Affiliation:
Departamento de Engenharia Metalúrgica e Materiais, Centro de Tecnologia, Universidade Federal do Ceará Campus do Pici, bloco 729, Fortaleza 60440-900, Ceará, Brazil
Hamilton F.G. de Abreu
Affiliation:
Departamento de Engenharia Metalúrgica e Materiais, Centro de Tecnologia, Universidade Federal do Ceará Campus do Pici, bloco 729, Fortaleza 60440-900, Ceará, Brazil
Pedro de Lima-Neto
Affiliation:
Departamento de Química Analítica e Físico Química, Centro de Ciências, Universidade Federal do Ceará, Campus do Pici, bloco 940, Fortaleza 60440-900, Ceará, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Model Fe–9Cr–xMo alloys with high Mo content alloys were cast to investigate the effect of Mo on the phase evolution and properties of the alloys. The Mo contents in the alloys were 5, 7, and 9 wt%, while the Cr content was held constant at 9 wt%. For comparison, a commercial A213T 9-P9 (Fe–9Cr–1Mo) alloy, widely used in the petrochemical industry, was also investigated. The alloys were heat-treated at temperatures between 450 and 650 °C and characterized by scanning electron microscopy, x-ray dispersive energy spectroscopy, and electron backscatter diffraction. Potentiodynamic linear polarization technique was used to evaluate the corrosion of the alloys in a 0.5 mol L−1 H2SO4 solution containing 0.1 mol L−1 NaCl. The results showed that the corrosion resistance of the alloys was affected by precipitation of the µ phase and that the Mo content in excess of 5% is deleterious to the corrosion resistance of the Fe–Cr–Mo alloys.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kim, M.J., Park, S.H., and Lee, D.B.: Corrosion of Fe-2.25%Cr-1%Mo steels at 600 °C-800 °C in N2/H2O/H2S atmospheres. Energy Procedia 14, 1837 (2012).CrossRefGoogle Scholar
Speight, J.G.: Handbook of Petroleum Product Analysis, Vol. 160 (Wiley-Interscience, New York, USA, 2001).Google Scholar
Nelson, A.T. and Klueh, R.L.: Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 371, 37 (2007).Google Scholar
Das, S.K., Joarder, A., and Mitra, A.: Magnetic Barkhausen emissions and microstructural degradation study in 1.25 Cr–0.50 Mo steel during high temperature exposure. NDT&E Int. 37, 243 (2004).CrossRefGoogle Scholar
Kuzucu, V., Aksoy, M., and Korkut, M.: The effect of strong carbide-forming elements such as Mo, Ti, V and Nb on the microstructure of ferritic stainless steel. J. Mater. Process. Technol. 82, 165 (1998).CrossRefGoogle Scholar
Souza, S.A.: Chemical Composition of Steels (Edgard Blücher Ed, São Paulo, Brazil, 2001).Google Scholar
Furtado, H.C., Almeida, L.H., and May, I.L.: Precipitation in 9Cr–1Mo steel after creep deformation. Mater.Charact. 58, 72 (2007).Google Scholar
Metals Handbook ASM: Corrosion: Fundamentals, Testing and Protection, Vol. 13A (American Society for Metals, Pennsylvania, USA, 2003).Google Scholar
Parvathavarthini, N., Saroja, S., Dayal, R.K., and Khatak, H.S.: Studies on hydrogen permeability of 2.25% Cr–1% Mo ferritic steel: Correlation with microstructure. J. Nucl. Mater. 288, 187 (2001).CrossRefGoogle Scholar
Mitchell, D.R.G.: Some applications of analytical TEM to the characterization of high temperature equipment. Micron 32, 831 (2001).Google Scholar
Jo, T.S., Lim, J.H., and Kim, Y.: Dissociation of Cr-rich M23C6 carbide in alloy 617 by severe plastic deformation. J. Nucl. Mater. 406, 360 (2010).CrossRefGoogle Scholar
Kodentsov, A.A., Bastin, G.F., and Van Loo, F.J.J.: The diffusion couple technique in phase diagram. J. Alloys Compd. 320, 207 (2001).Google Scholar
Andersson, J.O., Helander, T., Höglund, L., Shi, P., and Sundman, B.: Thermo-Calc&Dictra, Computational Tools for Materials Science. Calphad 26(2), 273312 (2002).Google Scholar
Bhadeshia, H.K.D.H. and Honeycombe, R.W.K.: Steels Microstructure and Properties, 3rd ed. (Elsevier, Great Britain, 2006).Google Scholar
Lerchbacher, C., Zinner, S., and Leitner, H.: Direct or indirect: Influence of type of retained austenite decomposition during tempering on the toughness of a hot-work tool steel. Mater. Sci. Eng., A 564, 163 (2013).Google Scholar
Hirata, A., Iwai, A., and Koyama, Y.: Characteristic features of the Fe7Mo6-type structure in a transition-metal alloy examined using transmission electron microscopy. Phys. Rev. B 74, 54204 (2006).Google Scholar
Jones, W.B., Hillis, C.R., and Polonis, D.H.: Microstructural evolution of modified 9Cr-lMo steel. Metall. Mater. Trans. A 22, 1049 (2001).CrossRefGoogle Scholar
Janovec, J., Svoboda, M., Výrostková, A., and Kroupa, A.: Time-temperature-precipitation diagrams of carbide evolution in low alloy steels. Mater. Sci. Eng., A 402, 288 (2005).CrossRefGoogle Scholar
Kroupa, A., Výrostková, A., Svoboda, M., and Javonec, J.: Carbide reactions and phase equilibria in low-alloy Cr–Mo–V steels tempered at 773–993 K. Part II: Theoretical calculations. Acta Mater. 46, 39 (1998).Google Scholar
Krauss, G.: Steels: Processing, Structure, and Performance (ASM International, Ohio, 2005); pp. 516519.Google Scholar
Padilha, A.F.: Decomposition modes of austenite in austenitic stainless steels. ISIJ Int. 42, 325 (2002).Google Scholar
Modi, O.P., Mungole, M.N., and Singh, K.P.: Potentiodynamic studies of modified 9Cr–1Mo ferritic steel in sulphuric acid and seawater. Corros. Sci. 30, 941 (1990).Google Scholar
Bojinov, M., Betova, I., and Raicheff, R.: Influence of molybdenum on the transpassivity of a Fe+12%Cr alloy in H2SO4 solutions. J. Electroanal. Chem. 430, 169 (1997).Google Scholar
Huntz, A.M., Bague, V., Beauplé, G., Haut, C., Sévérac, C., Lecourb, P., Longaygue, X., and Ropital, F.: Effect of silicon on the oxidation resistance of 9% Cr steels. Appl. Surf. Sci. 207, 255 (2003).Google Scholar
Smallman, R.E. and Bishop, R.J.: Modern Physical Metallurgy and Materials Engineering, 6th ed. (Elsevier, Great Britain, 1996).Google Scholar
Ustinovshikov, Y.: Chemical phase transition in alloys: Ordering-phase separation. Curr. Opin. Solid State Mater. Sci. 14, 7 (2010).CrossRefGoogle Scholar
Shen, Y.Z., Kim, S.H., Cho, H.D., Han, C.H., and Ryu, W.S.: Influence of tempering temperature upon precipitate phases in a 11%Cr ferritic/martensitic steel. J. Nucl. Mater. 400, 94 (2010).CrossRefGoogle Scholar
Kritzer, P.: Corrosion in high-temperature and supercritical water and aqueous solutions: A review. J. Supercrit. Fluids 29, 1 (2004).Google Scholar