Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T22:31:21.687Z Has data issue: false hasContentIssue false

The influence of implanted impurities on the thermally-induced epitaxial recrystallization of CoSi2

Published online by Cambridge University Press:  31 January 2011

M.C. Ridgway
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences, Australian National University, Canberra, Australia
R.G. Elliman
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences, Australian National University, Canberra, Australia, and Microelectronics and Materials Technology Centre, Royal Melbourne Institute of Technology, Melbourne, Australia
M. Petravic
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences, Australian National University, Canberra, Australia
R.P. Thornton
Affiliation:
Microelectronics and Materials Technology Centre, Royal Melbourne Institute of Technology, Melbourne, Australia
J.S. Williams
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences, Australian National University, Canberra, Australia, and Microelectronics and Materials Technology Centre, Royal Melbourne Institute of Technology, Melbourne, Australia
Get access

Abstract

The influence of implanted impurities (B, O, P, Ar, Xe, Pb, and Bi) on the rate of low-temperature (138 °C), solid-phase epitaxial growth (SPEG) of amorphized CoSi2 has been studied. SPEG rates of impurity-implanted CoSi2, as determined from time-resolved reflectivity measurements, were retarded for all impurities compared to that of Si-implanted CoSi2. The extent of retardation varied from a factor of 1.5 for P to 9.4 for Xe. Channeling measurements of impurity-implanted CoSi2 indicated that Xe and Bi atoms were located on nonsubstitutional lattice sites while ∼40% of Pb atoms occupied either substitutional sites or vacant interstitial cation sites following annealing. The presence of impurities did not affect the CoSi2 post-anneal crystalline quality, and no significant impurity diffusion was apparent at 138 °C from secondary-ion mass spectrometry measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Inter metallic Phases (American Society for Metals, Metals Park, OH, 1985).Google Scholar
2Tung, R. T., Bean, J. C., Gibson, J. M., Poate, J. M., and Jacobson, D. C., Appl. Phys. Lett. 40, 684 (1982) and references therein.CrossRefGoogle Scholar
3Rosencher, E., Delage, S., Campidelli, Y., and Arnaud d'Avitaya, F., Electron. Lett. 20, 762 (1984).CrossRefGoogle Scholar
4Hensel, J. C., Levi, A. F. J., Tung, R. T., and Gibson, J. M., Appl. Phys. Lett. 47, 151 (1985).CrossRefGoogle Scholar
5Shone, F. C., Saraswat, K. C., and Plummer, J. D., IEDM 85, 407 (1985).Google Scholar
6Tabasky, M., Bulat, E. S., Ditchek, B. M., Sullivan, M. A., and Shatas, S., in Rapid Thermal Annealing, edited by Sedgwick, T. O., Seidel, T. E., and Tsaur, B-Y. (Mater. Res. Soc., Pittsburgh, PA, 1985), p. 271.Google Scholar
7Ditchek, B. M., Tabasky, M., and Bulat, E. S., in Rapid Thermal Processing of Electronic Materials, edited by Wilson, S. R., Powell, R., and Davies, D. E. (Mater. Res. Soc., Pittsburgh, PA, 1987), p. 199.Google Scholar
8Maex, K., Ghosh, G., Delaey, L., Probst, V., Lippens, P., Van den hove, L., and De, R. F.Keersmaecker, J. Mater. Res. 4, 1209 (1989).CrossRefGoogle Scholar
9Maex, K., De Keersmaecker, R. F., Ghosh, G., Delaey, L., and Probst, V., J. Appl. Phys. 66, 5327 (1989).CrossRefGoogle Scholar
10Thomas, O., Gas, P., d'Heurle, F. M., LeGoues, F. K., Michel, A., and Scilla, G., J. Vac. Sci. A6, 1736 (1988).CrossRefGoogle Scholar
11Thomas, O., Gas, P., Charai, A., LeGoues, F. K., Michel, A., Scilla, G., and d'Heurle, F. M., J. Appl. Phys. 64, 2973 (1988).CrossRefGoogle Scholar
12Ridgway, M. C., Elliman, R. G., Thornton, R. P., and Williams, J. S., Appl. Phys. Lett. 56, 1992 (1990).CrossRefGoogle Scholar
13Hewett, C. A., Suni, I., Lau, S. S., Hung, L. S., and Scott, D. M., in Ion Implantation and Ion Beam Processing of Materials, edited by Hubler, G. K., Holland, O. W., Clayton, C. R., and White, C. W. (Elsevier, New York, 1984), p. 145.Google Scholar
14Hewett, C. A., Suni, I., Hung, L. S., and Lau, S. S., in Layered Structures and Interface Kinetics, edited by Furakawa, S. (KTK Scientific, Tokyo, 1985), p. 173.Google Scholar
15Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).CrossRefGoogle Scholar
16Olson, G. L., Kokorowski, S. A., MacFarlane, R. A., and Hess, L. D., Appl. Phys. Lett. 37, 1019 (1980).CrossRefGoogle Scholar
17Wagh, A. G., Bhattacharya, P. K., and Kansara, M. J., Nucl. Instrum. Methods 191, 96 (1981).CrossRefGoogle Scholar
18Kennedy, E. F., Csepregi, L., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4241 (1977).CrossRefGoogle Scholar
19Christodoulides, C. E., Grant, W. A., and Williams, J. S., Appl. Phys. 13, 391 (1977).CrossRefGoogle Scholar
20Csepregi, L., Kennedy, E. F., Gallagher, T. J., Mayer, J. W., and Sigmon, T. W., J. Appl. Phys. 48, 4234 (1977).CrossRefGoogle Scholar
21Williams, J. S., in Surface Modification and Alloying, edited by Poate, J. M., Foti, G., and Jacobson, D. C. (Plenum, New York, 1983), p. 133 and references therein.CrossRefGoogle Scholar
22Williams, J. S., Thornton, R. P., Elliman, R. G., Li, Y. H., and Pogany, A. P., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J. A., Borgesen, P., and Zuhr, R. A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 629.Google Scholar
23Donovan, E. P., Ph.D. Thesis, Harvard University (1982).Google Scholar
24Williams, J. S. and Elliman, R. G., Appl. Phys. Lett. 37, 389 (1981).Google Scholar
25Thornton, R. P., Elliman, R. G., and Williams, J. S., J. Mater. Res. 5, 1003 (1990).CrossRefGoogle Scholar
26Williams, J. S. and Short, K. T., in Metastable Phases by Ion Implantation, edited by Picraux, S. T. and Choyke, W. J. (North Holland, New York, 1982), p. 131.Google Scholar
27Tersoff, J. and Hamann, D. R., Phys. Rev. B 28, 1168 (1983).CrossRefGoogle Scholar
28Canali, C., Catellani, C., Prudenziati, M., Wadlin, W. H., and Evans, C. A., Jr., Appl. Phys. Lett. 31, 43 (1977).CrossRefGoogle Scholar
29Gunthaner, P. J., Gunthaner, F. J., Scott, D. M., Nicolet, M-A., and Mayer, J. W., J. Vac. Sci. Technol. 19, 641 (1981).CrossRefGoogle Scholar
30Lidiard, A. B., in Crystals with the Fluorite Structure, edited by Hayes, W. (Clarendon Press, Oxford, 1974), p. 101.Google Scholar
31d'Heurle, F. M., in Solid State Devices 1985, edited by Balk, P. and Folberth, O. G. (Elsevier, Amsterdam, 1986), p. 213.Google Scholar