Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-26T21:31:53.589Z Has data issue: false hasContentIssue false

Influence of growth parameters on the microstructure of directionally solidified Bi2Sr2CaCu2Oy

Published online by Cambridge University Press:  31 January 2011

M. J. Cima
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
X. P. Jiang
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
H. M. Chow
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
J. S. Haggerty
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
M. C. Flemings
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
H. D. Brody
Affiliation:
University of Pittsburgh, Pittsburgh, Pennsylvania 15261
R. A. Laudise
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07922
D. W. Johnson
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07922
Get access

Abstract

Laser-heated float zone growth was used to study the directional solidification behavior of Bi–Sr–Ca–Cu–O superconductors. The phases that solidify from the melt, their morphology, and their composition are altered by growth rate. Highly textured microstructures are achieved by directional solidification at all growth rates. The superconducting phase is found always to have the composition Bi2.5Sr2CaCu2.2Oy when grown from boules with composition 2:2:1:2 (BiO1.5:SrO:CaO:CuO). Planar growth fronts of Bi2.5Sr2CaCu2.2Oy are observed when the temperature gradient divided by the growth rate (G/R) is larger than 3 ⊠ 1011 K-s/m2 in 2.75 atm oxygen. Thus, the 2212 compound was observed to solidify directly from the melt at the slowest growth rates used in this study. Measurement of the steady-state liquid zone composition indicates that it becomes bismuth-rich as the growth rate decreases. Dendrites of the primary solidification phase, (Sr1−xCax)14Cu24Oy, form in a matrix of Bi2.5Sr2CaCu2.2Oy when G/R is somewhat less than 3 ⊠ 1011 K-s/m2. Observed microstructures are consistent with a peritectic relationship among Bi2.5Sr2CaCu2.2Oy, (Sr1−xCax)14Cu24Oy (x = 0.4), and a liquid rich in bismuth at elevated oxygen pressure. At lower values of G/R, Sr3Ca2Cu5Oy is the primary solidification phase and negligible Bi2.5Sr2CaCu2.2Oy forms in the matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Ekin, J. W., Braginski, A. I., Panson, A. J., Janocko, M. A., Capone, D. W., Zaluzec, N. J., Flandermeyer, B., deLima, O. F., Hong, M., Kwo, J., and Lion, S. H., J. Appl. Phys. 62 (12), 48214828 (1987).CrossRefGoogle Scholar
2Dimos, D., Chaudhari, P., Mannhart, J., and LeGoues, F. K., Phys. Rev. Lett. 61 (2), 219222 (1988).CrossRefGoogle Scholar
3Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C. C., and McGuire, T. R., Phys. Rev. Lett. 61 (21), 24762479 (1988).CrossRefGoogle Scholar
4Haggerty, J. S. and Menashi, W. P., NASA, Contract No. NAS3–13479 (February 1971).Google Scholar
5Haggerty, J. S., Menashi, W. P., and Wenckus, J. F., “Methods of Forming Refractory Fibers by Laser Energy,” U.S. Patent No. 3944640, March 1976.Google Scholar
6Jin, S., Tiefel, T. H., Sherwood, R. C., Davis, M. E., Dover, R. B. van, Kanemlott, G. W., Fastnacht, R. A., and Keith, H. D., Appl. Phys. Lett. 52 (24), 20742076 (1988).CrossRefGoogle Scholar
7Murakami, M., Marita, M., Doi, K., and Miyamoto, K., J. Appl. Phys., preprint (1989).Google Scholar
8Feigelson, R. S., Gazit, D., Fork, D. K., and Geballe, T. H., Science 240, 16421645 (1988).CrossRefGoogle Scholar
9Takekawa, S., Nozaki, H., Umizone, A., Kosuda, K., and Kobayashi, M., J. Cryst. Growth 92, 687 (1988).CrossRefGoogle Scholar
10Brody, H. D., Haggerty, J. S., Cima, M. J., Flemings, M. C., Barns, R. L., Gyorgy, M., Johnson, D. W., Rhodes, W. W., Sunder, W. A., and Laudise, R. A., J. Cryst. Growth 96, 225233 (1989).CrossRefGoogle Scholar
11Shiohara, Y., Nakagawa, M., Suga, T., Ishige, K., Oyama, T., Izumi, T., Nagaya, S., Miyajima, M., Hirabayashi, I., and Tanaka, S., Proc. of 2nd Int. Symp. on Superconductivity, Tsukuba, Japan, 1989 (to be published by Springer-Verlag, Tokyo).Google Scholar
12Pfann, W. G., Zone Melting (John Wiley & Sons, New York, 1958).Google Scholar
13Flemings, M. C., Solidification Processing (McGraw-Hill, New York, 1974).CrossRefGoogle Scholar
14Mollard, F. R. and Flemings, M. C., Trans. TMS-AIME 239, 15261533 (1967).Google Scholar
15Rinaldi, M., Sharp, R. M., and Flemings, M. C., Metall. Trans. 3, 3139 (1972).CrossRefGoogle Scholar
16David, S. A. and Brody, H. D., Metall. Trans. 5, 26082610 (1974).CrossRefGoogle Scholar
17Hunt, J. D. and Jackson, K. A., AIME Trans. 236, 843 (1966).Google Scholar
18Stubican, V. S. and Bradt, R. C., Ann. Rev. Mat. Sci. 11, 287297 (1981).CrossRefGoogle Scholar
19Dubois, D., Dhalenne, G., d'Yvoire, F., and Revcolevschi, A., J. Am. Ceram. Soc. 69 (1), C6–C8 (1986).CrossRefGoogle Scholar
20Sheherbakov, G., David, S. A., and Brody, H. D., Scripta Metall. 8, 12391244 (1974).CrossRefGoogle Scholar
21Brody, H. D. and David, S. A., Solidification and Casting of Metals (Institute of Metals, New York, 1979), pp. 141151.Google Scholar
22Kimura, F. and Shindo, I., J. Cryst. Growth 41, 192198 (1977).CrossRefGoogle Scholar
23Chalmers, B., Principles of Solidification (Wiley, J., New York, 1964), pp. 150163.Google Scholar
24Tiller, W. A., Jackson, K. A., Rutter, J. W., and Chalmers, B., Acta Metall. 1, 428 (1953).CrossRefGoogle Scholar
25Kurz, W. and Fisher, D. J., Fundamentals of Solidification (Trans. Tech. Publications, Ltd., Switzerland, 1986), pp. 4758.Google Scholar
26Schlesinger, Z., Collins, R. T., and Kaiser, D. L., Phys. Rev. Lett. 59, 19581961 (1987).CrossRefGoogle Scholar
27Oka, Y., Yamamoto, N., Kitaguchi, H., Oda, K., and Takada, J., Jpn. J. Appl. Phys. 28 (2), L213–L216 (1989).CrossRefGoogle Scholar
28Onoda, M., Yamamoto, A., Takayama-Muromachi, E., and Takekawa, S., Jpn. J. Appl. Phys. 27 (5) L833–L836 (1988).CrossRefGoogle Scholar
29Luo, J., Cutro, J. A., Chow, H. M., Cima, M. J., and Rudman, D. A., 1990 APS, March Meeting, Anaheim, CA.Google Scholar
30Guillermo, R., Conflant, P., Boivin, J., and Thomas, D., Rev. de Chim. minerale 15, 153159 (1978).Google Scholar
31Conflant, P., Boivin, J., and Thomas, D., J. Solid State Chem. 18, 133140 (1976).CrossRefGoogle Scholar
32Levin, E. M. and Roth, R. S., J. Res. N.B.S. 68A (2), 197206 (1964).Google Scholar
33Chakoumakos, B. C., Ebey, P. S., Sales, B. C., and Sonder, E., J. Mater. Res. 4, 767780 (1989).CrossRefGoogle Scholar
34Boivin, J., Thomas, D., and Tridot, G., Acad, C. R.. Sc. Paris 276, 11051107 (1973).Google Scholar
35Roth, R. S., Rawn, C. J., Whitler, J. D., Ritter, J. J., and Burton, B., to be published in the J. Am. Ceram. Soc.Google Scholar
36Torardi, C. C., Subramanian, M. A., Calabrese, J. C., Gopalakrishnan, J., Morrissey, K. J., Askew, T. R., Flippen, R. B., Chowdhry, U., and Sleight, A. W., Science 240, 631634 (1988).CrossRefGoogle Scholar
37Saggio, J. A., Sujata, K., Hahn, J., Hwu, S. J., Poeppelmeier, K. R., and Mason, T. O., J. Am. Ceram. Soc. 72 (5), 849853 (1989).CrossRefGoogle Scholar
38Lange, F., University of California, Santa Barbara (private communication).Google Scholar
39Gadalla, A. M. and White, J., Trans. Brit. Ceram. Soc. 65 (4), 185 (1966).Google Scholar
40Schmal, N. G. and Minzl, E., Z. Physik. Chem. Frankfurt/M 47, 358 (1965).CrossRefGoogle Scholar
41, Teske and Muller-Buschbaum, H-K., Z. Anorg. Allg. Chem. 371, 325332 (1969).CrossRefGoogle Scholar
42, Teske and Muller-Buschbaum, H-K., Z. Anorg. Allg. Chem. 379, 234241 (1970).Google Scholar
43Gazit, D., Peszkin, P. N., Moulton, L. V., and Feigelson, R. S., J. Cryst. Growth 98, 545549 (1989).CrossRefGoogle Scholar
44Jiang, X. P., Brody, H. D., Cima, M. J., Chow, H. M., Haggerty, J. S., and Flemings, M. C., in preparation.Google Scholar