Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-20T07:01:17.707Z Has data issue: false hasContentIssue false

Influence of elemental B addition on the heat-treated cast structures of Ti–47Al–2Cr–(2–4)Nb alloys

Published online by Cambridge University Press:  31 January 2011

J. Y. Jung
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusung-Dong Yosung-Gu, 305-701 Taejon, South Korea
J. K. Park
Affiliation:
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1 Kusung-Dong Yosung-Gu, 305-701 Taejon, South Korea
Get access

Abstract

The influence of elemental B addition on the heat-treated cast structure of Ti–47Al–2Cr–(2–4)Nb alloys has been investigated using x-ray diffractometry, optical microscopy, scanning and transmission electron microscopy, and tensile testing. The phase sequence is β → β + α → α → α + γ → α + β + γ → β + γ. The addition of (0–2 at. %) B does not change the phase sequence. It, however, tends to stabilize α phase by shifting the (α + β + γ) three-phase region toward a higher (Cr + Nb) content. The B addition does not significantly alter the equilibrium composition within (α + γ) two-phase field. The B addition markedly accelerates the lamellar formation kinetics and enhances the thickening rate of γ plates, despite the fact that it increases both the misfit between α and γ plates and the α/γ interfacial energy. The acceleration of lamellar formation kinetics is thus believed to be primarily due to the enhancement of chemical diffusivity as a result of B addition. The B addition induces a significant refinement of heat-treated cast structure. This is primarily due to the role of boride to disperse the interdendritic γ regions to a fine network and to refine the dendrite cell size. Further refinement arises from the boride's role to act as the nucleation site for γ grains and from the intrinsic B effect to enhance the chemical diffusivity and the γ thickening rate. The addition of a small amount of B enhances both the strength and tensile ductility of near gamma structure. The strengthening arises from grain size refinement and from the boride dispersion. The calculation of fracture strain suggests that an enhancement of ductility for small B addition (up to ∼0.2 at. %) is mostly due to its effect to refine the γ grains.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kim, Y-W., J. Metals 41 (7), 24 (1989).Google Scholar
2.Kim, Y-W. and Dimiduk, D. M., J. Metals 43 (8), 40 (1991).Google Scholar
3.Kim, Y-W., J. Metals 46 (7), 30 (1994).Google Scholar
4.Valencia, J. J., Löfvander, J. P. A., McCullough, C., Levi, C. G., and Mehrabian, R., Mater. Sci. Eng. A144, 25 (1991).CrossRefGoogle Scholar
5.Kampe, S. L., Bryant, J. D., and Christodoulou, L., Metall. Trans. 22A, 447 (1991).CrossRefGoogle Scholar
6.Larsen, D. E., Adams, M. L., Kampe, S. L., Christodoulou, L., and Bryant, J. D., Scripta Metall. Mater. 24, 851 (1990).CrossRefGoogle Scholar
7.Bryant, J. D., Christodoulou, L., and Maisano, J. R., Scripta Metall. Mater. 24, 33 (1990).CrossRefGoogle Scholar
8.Feng, C. R., Michel, D. J., and Crowe, C. R., Scripta Metall. Mater. 24, 1297 (1990).CrossRefGoogle Scholar
9.Guillard, S. and Rack, H. J., Mater. Sci. Eng. A183, 181 (1994).CrossRefGoogle Scholar
10.Bryant, J. D., Kampe, S. L., Sadler, P., and Christodoulou, L., Metall. Trans. 22A, 2009 (1991).CrossRefGoogle Scholar
11.Larsen, D. E., in Microstructure/Property Relationships in Titanium Aluminides and Alloys, edited by Kim, Y-W. and Boyer, R. R. (TMS, Warrendale, PA, 1991), p. 345.Google Scholar
12.Feng, C. R., Smith, H. H., Michel, D. J., and Crowe, C. R., in Microstructure/Property Relationships in Titanium Aluminides and Alloys, edited by Kim, Y-W. and Boyer, R. R. (TMS, Warrendale, PA, 1991), p. 353.Google Scholar
13.Hyman, M. E., McCullough, C., Levi, C. G., and Mehrabian, R., Metall. Trans. 22A, 1647 (1991).CrossRefGoogle Scholar
14.Hyman, M. E., McCullough, C., Valencia, J. J., Levi, C. G., and Mehrabian, R., Metall. Trans. 20A, 1847 (1989).CrossRefGoogle Scholar
15.Nakano, T. and Umakoshi, Y., Intermetallics 2, 185 (1994).CrossRefGoogle Scholar
16.Kattner, U. R., Lin, J-C., and Chang, Y. A., Metall. Trans. 23A, 2081 (1992).CrossRefGoogle Scholar
17.Kim, Y-W., Acta Metall. Mater. 40, 1121 (1992).CrossRefGoogle Scholar
18.Nakamura, H., Takeyama, M., Wei, L., Yamabe, Y., and Kikuchi, M., in Proc. 3rd Japan SAMPE Symp. on “Advanced Materials”–New Processes and Reliability, edited by Kishi, T., Takeda, N., and Kagawa, Y. (Japan Chapter of SAMPE, Chiba, Japan, 1993), Vol. 2, p. 1353.Google Scholar
19.Kawabata, T., Tamura, T., and Izumi, O., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 329.Google Scholar
20.Ramanujan, R. V., Acta Metall. Mater. 42, 2313 (1994).CrossRefGoogle Scholar
21.Jung, J. Y., Park, J. K., and Chun, C. H., in The 2nd Pacific Rim Int'l Conf. on Advanced Materials and Processing, edited by Shin, K. S., Yoon, J. K., and Kim, S. J. (Korea Inst. Metals, Kyungju, Korea, 1995), Vol. 3, p. 2471.Google Scholar
22.Shong, D. S. and Kim, Y-W., Scripta Metall. 23, 256 (1989).Google Scholar
23.Yamabe, Y., Hondo, N., and Kikuchi, M., in Intermetallic Compounds–Structure and Mechanical Properties: JIMIS-6, edited by Izumi, O. (JIM, Sendai, Japan, 1991), p. 821.Google Scholar
24.Park, J. K., Lee, Y. C., Jung, J. Y., and Lee, Y. T., in Proc. 3rd Japan SAMPE Symp. on “Advanced Materials”–New Processes and Reliability, edited by Kishi, T., Takeda, N., and Kagawa, Y. (Japan Chapter of SAMPE, Chiba, Japan, 1993), Vol. 2, p. 1359.Google Scholar
25.Chan, K. S., Metall. Mater. Trans. 25A, 299 (1994).CrossRefGoogle Scholar
26.Dowling, N. E., Eng. Frac. Mech. 26, 333 (1987).CrossRefGoogle Scholar
27.Chan, K. S. and Kim, Y-W., Metall. Trans. 23A, 1663 (1992).CrossRefGoogle Scholar
28.Deve, H. E. and Evans, A. G., Acta Metall. Mater. 39, 1171 (1991).CrossRefGoogle Scholar
29.McQuay, P. A., Dimiduk, D. M., and Semiatin, S. L., Scripta Metall. Mater. 25, 1689 (1991).CrossRefGoogle Scholar
30.Ogden, H. R., Maykuth, D. J., Finlay, W. F., and Jaffe, R. I., Trans. Metall. Soc. AIME 191, 1150 (1951).Google Scholar
31.Bumps, E. S., Kessler, H. D., and Hansen, M., Trans. Metall. Soc. AIME 194, 609 (1952).Google Scholar
32.Kornilov, I. I., Pylaeva, E. N., and Volkova, M. A., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk 7, 771 (1956).Google Scholar
33.Clark, D., Jepson, K. S., and Lewis, G. I., J. Inst. Metals 91, 197 (19621963).Google Scholar
34.Crossley, F. A., Trans. Metall. Soc. AIME 236, 1174 (1966).Google Scholar
35.Blackburn, M. J., Trans. Metall. Soc. AIME 239, 1200 (1967).Google Scholar
36.Walkowiak, G., Sell, T., and Mehrer, H., Z. Metallkd. 85, 332 (1994).Google Scholar
37.Feng, C. R., Michel, D. J., and Crowe, C. R., Scripta Metall. 23, 1707 (1989).CrossRefGoogle Scholar