Article contents
The influence of drying temperature on the close packed structure of silanized monolayers deposited on indium tin oxide (ITO) substrates
Published online by Cambridge University Press: 23 February 2011
Abstract
Molecular organization of self-assembled n-dimethyl-n-octadecyl-3-aminopropyltrimethoxysilychloride (DMOAP) layers on indium tin oxide (ITO) coated glass substrates was thoroughly investigated. The layer thickness for each deposition was determined by variable angle spectroscopic ellipsometry (VASE), while from static contact-angle measurements we deduced valuable information regarding the ordering of the molecular structures at the solid-air interface. In particular, the DMOAP thin film formation was studied for two different drying temperatures (85 °C and 120 °C). While at Tdrying = 85 °C we observed the formation of a molecular monolayer characterized by a close packed structure, at the higher temperature the DMOAP molecules “bend” at the substrate as they stack in relatively disordered clusters. A qualitative interpretation of this phenomenon is given, in good agreement both with the obtained experimental data and experimental investigation reported in the scientific literature. The observations regarding the DMOAP molecular level organization as a function of substrate temperature could bring essential information to the self assembly research community and also explain some important physical phenomena occurring at interfaces.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2009
References
- 3
- Cited by