Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T20:14:00.675Z Has data issue: false hasContentIssue false

Influence of Bi-site Substitution on the Ferroelectricity of the Aurivillius Compound Bi2SrNb2O9

Published online by Cambridge University Press:  31 January 2011

P. Durán-Martín-
Affiliation:
Instituto de Ciencia de Materiales, CSIC. Cantoblanco. 28049-Madrid, Spain
A. Castro
Affiliation:
Instituto de Ciencia de Materiales, CSIC. Cantoblanco. 28049-Madrid, Spain
P. Millán
Affiliation:
Instituto de Ciencia de Materiales, CSIC. Cantoblanco. 28049-Madrid, Spain
B. Jiménez
Affiliation:
Instituto de Ciencia de Materiales, CSIC. Cantoblanco. 28049-Madrid, Spain
Get access

Abstract

Ceramics based on the composition Bi2SrNb2O9 with isomorphic substitutions of cations in the Bi2O22+ and the perovskite layers, Bi2−xTexSr1−xNa(K)xNb2O9, have been prepared by solid state reaction. The ferroelectricity of this Aurivillius type structure has been studied. Dielectric measurements as a function of the temperature show a low temperature maximum in the dielectric constant that would correspond to a ferro-;paraelectric phase transition. The temperature of this maximum increases when the radius of the ion that substitutes Sr for decreases. A second maximum in the dielectric constant is found at higher temperature possibly corresponding to a relaxor ferroelectric. Measurements of remanent polarization as a function of the temperature seem to confirm the relaxor behavior, because the polarization disappears at temperatures between the two maxima of the dielectric constant. Saturated hysteresis loops are obtained for all the substituted samples at temperatures above 300 °C. Ferroelectric parameters such as the polarization, coercive field, and coupling factors of the BSN family compounds were obtained for the first time. The ac electric conductivity shows anomalies at temperatures close to those where the remanent polarization disappears. Activation energies calculated from measurements of dc electric conductivity, impedance arcs, and dielectric modulus data may be associated with thermally activated oxygen vacancies.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Aurivillius, B., Arkiv. Kemi. 1, 463 (1949).Google Scholar
2.Castro, A., Millán, P., Martínez-Lope, M. J., and Torrance, J. B., Solid State Ionics 63–65, 897 (1993).CrossRefGoogle Scholar
3.Millán, P., Ramírez, A., and Castro, A., J. Mater. Sci. Lett. 14, 1657 (1995).CrossRefGoogle Scholar
4.Jiménez, B., Durán-Martín, P., Castro, A., and Millán, P., Ferroelectrics 186, 93 (1996).CrossRefGoogle Scholar
5.Ramírez, A., Millán, P., Castro, A., and Torrance, J. B., Eur. J. Solid State Inorg. Chem. 31, 173 (1994).Google Scholar
6.Subbarao, E. C., J. Phys. Chem. Solids 23, 665 (1962).CrossRefGoogle Scholar
7.Newnham, R. E., Wolfe, R. W., and Dorrian, J. F., Mater. Res. Bull. 6, 1029 (1971).CrossRefGoogle Scholar
8.Wolfe, R. W., Newnham, R. E., and Smith, D. K., Ferroelectrics 3, 1 (1971).CrossRefGoogle Scholar
9.Newnham, R. E., Wolfe, R. W., Horsey, R. S., Díaz-Colón, F. A., and Kay, M. I., Mater. Res. Bull. 8, 1183 (1973).CrossRefGoogle Scholar
10.Cheng, B. L., Gabbay, M., and Fantozzi, G., J. Mater. Sci. 31, 4141 (1996).CrossRefGoogle Scholar
11.Smolensky, G. A., J. Phys. Soc. Jpn. 28, suppl., 26 (1970).Google Scholar
12.Cross, L. E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
13.Yokosuka, M., Jpn. J. Appl. Phys. 25, 1183 (1986).CrossRefGoogle Scholar
14.Kim, S. K., Miyayama, M., and Yanagida, H., Mater. Res. Bull. 31, 121 (1996).CrossRefGoogle Scholar
15.Rae, A. D., Thompson, J. G., and Withers, R. L., Acta Crystallogr. Sect. B 48, 418 (1992).CrossRefGoogle Scholar
16.Withers, R. L., Thompson, J. G., and Rae, A. D., J. Solid State Chem. 94, 404 (1991).CrossRefGoogle Scholar
17.Robertson, J., Chen, C. W., Warren, W. L., and Gutleben, C. D., Appl. Phys. Lett. 69, 1704 (1996).CrossRefGoogle Scholar
18.Warren, W. L., Robertson, J., Dimos, D., Tuttle, B. A., Pike, G. E., and Payne, D. A., Phys. Rev. B 53, 3080 (1996).CrossRefGoogle Scholar
19.Galy, J., Meunier, G., Andersson, S., and Astrom, A., J. Solid State Chem. 13, 142 (1975).CrossRefGoogle Scholar
20.Kim, S. K., Miyayama, M., and Yanagida, H., J. Ceram. Soc. Jpn. 102, 719 (1996).Google Scholar