Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T05:09:48.797Z Has data issue: false hasContentIssue false

The influence of applied stress on precipitate shape and stability

Published online by Cambridge University Press:  31 January 2011

M.B. Berkenpas
Affiliation:
Department of Metallurgical Engineering and Materials Science. Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213
William C. Johnson
Affiliation:
Department of Metallurgical Engineering and Materials Science. Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213
D.E. Laughlin
Affiliation:
Department of Metallurgical Engineering and Materials Science. Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213
Get access

Abstract

Shape transitions and orientation alignment of elastically misfitting precipitates in the presence of an external stress field have been predicted using bifurcation and group theory and by performing actual energy calculations for elliptical cylinders under plane strain conditions. Under the assumption of system isotropy, the applied field acts to break or perturb the bifurcation. Both first- and second-order size-induced shape transitions are observed for elastically soft precipitates. Stress-induced shape transitions are shown to be either first-order or continuous for elastically soft precipitates. Only continuous stressinduced shape transitions are observed for hard precipitates.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Ardell, A. J. and Nicholson, R. B., Acta Metall. 14, 1295 (1966).CrossRefGoogle Scholar
2Iooss, G. and Joseph, D. D., Elementary Stability and Bifurcation Theory (Springer, Berlin, 1980).CrossRefGoogle Scholar
3Poston, T. and Stewart, I., Catastrophe Theory and its Applications (Pitman, Boston, 1978).Google Scholar
4Johnson, W. C. and Cahn, J. W., Acta Metall. 32, 1925 (1984).Google Scholar
5Tien, J. K. and Copley, S. M., Metall. Trans. 2, 215 (1971).Google Scholar
6Miyazaki, T., Nakamura, K., and Mori, H., J. Mater. Sci. 14, 1827 (1979).CrossRefGoogle Scholar
7Eto, T., Sato, A., and Mori, T., Acta Metall. 24, 559 (1976).Google Scholar
8MacKay, R. A. and Ebert, L. J., Metall. Trans. A 16, 1969 (1985).Google Scholar
9Kournettes, P. and Stierstadt, K., Philos. Mag. B 51, 381 (1985).Google Scholar
10Bacri, J. C. and Salin, D., J. Phys. (Paris) Lett. 43, L649 (1982).Google Scholar
11Cahn, J. W. and Kalonji, G., Solids-Solid Phase Transformations, edited by Aaronson, H. I., Laughlin, D. E., Sekerka, R. F. and Wayman, C. M. (T. M. S.-A. I. M. E., Warrendale, PA, 1982), pp. 314.Google Scholar
12Guymont, M., Phys. Rev. B24, 2647 (1981).Google Scholar
13Sirotin, Y. I. and Shaskolskaya, M. P., Fundamentals of Crystal Physics (Mir, Moscow, 1982), p. 429Google Scholar
14Landau, L. D. and Lifshitz, E. M., Statistical Physics (Pergamon, Oxford, 1980), 3rd ed., Chap. XIV.Google Scholar
15Byrd, P. F. and Friedman, M. D., Handbook of Elliptic Integrals for Engineers and Scientists (Springer, New York, 1971).CrossRefGoogle Scholar
16Falk, F., J. Phys. (Paris) Colloq. 43, C4-3 (1982).Google Scholar
17Koptsik, V. A., Sov. Phys. Crystallogr. 2, 95 (1957).Google Scholar
18Zheludev, I. S., Sov. Phys. Crystallogr. 2, 330 (1957).Google Scholar
19Curie, P., J. Phys. (Paris) 3, 393 (1894).Google Scholar
20Perelomova, N. V. and Tagieva, M. M., Problems in Crystal Physics with Solutions (Mir, Moscow, 1983), Chap. 2.Google Scholar
21Kocinski, J., Theory of Symmetry Changes at Continuous Phase Transitions (Elsevier, New York, 1983), pp. 162172.Google Scholar
22Nye, J. F., Physical Properties of Crystals (Clarendon, Oxford, 1979), pp. 2024.Google Scholar