Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T15:58:44.026Z Has data issue: false hasContentIssue false

Influence of a rapid annealing on the surface oxide film of a tinned copper wire

Published online by Cambridge University Press:  08 February 2011

Isabelle Gillet
Affiliation:
Labinal, B. P. 218, 78051 St Quentin Yvelines Cedex, France
Lionel Boyer
Affiliation:
Laboratoire de Génie Electrique de Paris, Ecole Supérieure d'Electricité, Universités Paris VI et Paris XI, U.R.A. C.N.R.S. D 0127, Plateau du Moulon, 91190 Gif/Yvette, France
Camille Bodin
Affiliation:
Laboratoire de Génie Electrique de Paris, Ecole Supérieure d'Electricité, Universités Paris VI et Paris XI, U.R.A. C.N.R.S. D 0127, Plateau du Moulon, 91190 Gif/Yvette, France
Germaine Binder
Affiliation:
Alcatel-cuivre, B.P. 30, 02301 Chauny Cedex, France
Get access

Abstract

A continuous annealing, using the Joule effect, is performed during the fabrication of a tinned copper wire. During this operation, which lasts between 1/10 and 1/100 of a second, the wire is brought in air to a temperature which exceeds the melting point of tin. The influence of the continuous annealing on the nature of the surface layer of the tin coating is studied using XPS. The thickness of the tin oxide film covering the metallic tin is shown to be reduced after the annealing. This result is confirmed by measurements of the electrical contact resistance using the crossed rods method.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Holm, R., Elect, contact (Springer, Berlin, Germany, 1967), p. 42.Google Scholar
2Patel, A. R., Damodaras, V., and Mysorewala, V., Mater. Res. Bull. V, 1031 (1970).Google Scholar
3Lau, C. L. and Wertheim, G. K., J. Vac. Sci. Technol. 15 (2), 622 (1978).CrossRefGoogle Scholar
4Powell, R. A., Appl. of Surf. Sci. 2, 397 (1979).CrossRefGoogle Scholar
5Sen, S. K., Sen, S., and Bauer, C. L., Thin Solid Films 82, 157 (1981).Google Scholar
6Frankenthal, R. P. and Siconolfi, D. J., Corr. Sci. 21 (7), 479 (1981).Google Scholar
7Bevolo, A. J., Verhoeven, J. D., and Noack, M., J. Vac. Sci. Technol. 20 (4), 943 (1982).Google Scholar
8Bevolo, A. J., Verhoeven, J. D., and Noack, M., Surf. Sci. 134, 499 (1983).CrossRefGoogle Scholar
9Wood, M. E. and Hopkins, B. J., J. Phys. C 18, 3255 (1985).Google Scholar
10Wood, M. E. and Hopkins, B. J., J. Phys. C 19, 637 (1986).CrossRefGoogle Scholar
11Roark, R. J. and Young, W. C., Formula for Stress and Strain, 5th ed. (McGraw-Hill, 1975), p. 517.Google Scholar
12Barry, B. T. K. and Thwaites, C. J., Tin and Its Alloys and Compounds (Ellis Horwood Series Industrial Metals, England, 1983), p. 19.Google Scholar
13Lin, A. W. C., Armstrong, N. R., and Kuwana, T., Anal. Chem. 49 (8), 1228 (1977).Google Scholar