Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:08:34.413Z Has data issue: false hasContentIssue false

Inducing Reversible Stiffness Changes in DNA-crosslinked Gels

Published online by Cambridge University Press:  01 June 2005

D.C. Lin
Affiliation:
Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854
B. Yurke
Affiliation:
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974
N.A. Langrana*
Affiliation:
Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey 08854
*
a) Address all correspondence to this author. Present address: Department of Mechanical and Aerospace Engineering, Rutgers University, 98 Brett Road, Piscataway, New Jersey 08854 e-mail: [email protected]
Get access

Abstract

Researchers have constructed a number of DNA-based nanodevices that undergo stepped configuration changes through the application of single-stranded DNA oligomers. Such devices can be incorporated into gel networks to create new classes of active materials with controllable bulk mechanical properties. This concept was demonstrated in a DNA-crosslinked gel, the stiffness of which was modulated through the application of DNA strands. Each crosslink incorporated a single-stranded region to which a DNA strand with a complementary base sequence (called the fuel strand) bound, thereby changing the nanostructure of the gel network. The gel was restored to its initial stiffness through the application of the complement of the fuel strand, which cleared the fuel strand from the crosslink via competitive binding. Stiffness changes in excess of a factor of three were observed. The ability to switch the mechanical properties of these gels without changing temperature, buffer composition, or other environmental conditions, apart from the application of DNA, makes these materials attractive candidates for biotechnology applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Seeman, N.C. In Biomolecular Stereodynamics, edited by Sarma, R.H. (Adenine Press, New York, 1981), pp. 269277.Google Scholar
2Seeman, N.C.: Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237 (1982).CrossRefGoogle ScholarPubMed
3Seeman, N.C.: DNA in a material world. Nature 421, 427 (2003).CrossRefGoogle Scholar
4Yurke, B., Mills, A.P. and Jr., : Using DNA to power nanostructures. Genet. Program. Evol. Mach. 4, 111 (2003).CrossRefGoogle Scholar
5Yurke, B., Turberfield, A.J., Mills, A.P. Jr.Simmel, F.C. and Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605 (2000).CrossRefGoogle ScholarPubMed
6Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills, A.P. Jr.Blakey, M.I. and Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003).CrossRefGoogle ScholarPubMed
7Simmel, F.C. and Yurke, B.: Using DNA to construct and power a nanoactuator. Phys. Rev. E 63, 041913 (2001).CrossRefGoogle Scholar
8Simmel, F.C. and Yurke, B.: A DNA-based molecular device switchable between three distinct mechanical states. Appl. Phys. Lett. 80, 883 (2002).CrossRefGoogle Scholar
9Feng, L., Park, S.H., Reif, J.H. and Yan, H.: A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. Engl. 42, 4342 (2003).CrossRefGoogle ScholarPubMed
10Li, J.J. and Tan, W.: A single DNA molecule nanomotor. Nano Lett. 2, 315 (2002).CrossRefGoogle Scholar
11Alberti, P. and Mergny, J.L.: DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. USA 100, 1569 (2003).CrossRefGoogle ScholarPubMed
12Luo, D.: The road from biology to materials. Mater. Today 6, 38 (2003).CrossRefGoogle Scholar
13Niemeyer, C.M.: Self-assembled nanostructures based on DNA: Towards the development of nanobiotechnology. Curr. Opin. Chem. Biol. 4, 609 (2000).CrossRefGoogle ScholarPubMed
14Jeong, J.H. and Park, T.G.: Novel polymer-DNA hybrid polymeric micelles composed of hydrophobic poly(D, L-lactic-co-glycolic acid) and hydrophilic oligonucleotides. Bioconjugate Chem. 12, 917 (2001).CrossRefGoogle ScholarPubMed
15Arigita, C., Zuidam, N.J., Crommelin, D.J. and Hennink, W.E.: Association and dissociation characteristics of polymer/DNA complexes used for gene delivery. Pharm. Res. 16, 1534 (1999).CrossRefGoogle ScholarPubMed
16Trubetskoy, V.S., Budker, V.G., Hanson, L.J., Slattum, P.M., Wolff, J.A. and Hagstrom, J.E.: Self-assembly of DNA-polymer complexes using template polymerization. Nucleic Acids Res. 26, 4178 (1998).CrossRefGoogle ScholarPubMed
17Twaites, B.R., de Alarcon, C. las Heras, Cunliffe, D., Lavigne, M., Pennadam, S., Smith, J.R., Gorecki, D.C. and Alexander, C.: Thermo and pH responsive polymers as gene delivery vectors: Effect of polymer architecture on DNA complexation in vitro. J. Controlled Release 97, 551 (2004).CrossRefGoogle ScholarPubMed
18Murata, M., Kaku, W., Anada, T., Sato, Y., Kano, T., Maeda, M. and Katayama, Y.: Novel DNA/polymer conjugate for intelligent antisense reagent with improved nuclease resistance. Bioorg. Med. Chem. Lett. 13, 3967 (2003).CrossRefGoogle ScholarPubMed
19Carlisle, R.C., Etrych, T., Briggs, S.S., Preece, J.A., Ulbrich, K. and Seymour, L.W.: Polymer-coated polyethylenimine/DNA complexes designed for triggered activation by intracellular reduction. J. Gene Med. 6, 337 (2004).CrossRefGoogle ScholarPubMed
20Livache, T., Fouque, B., Roget, A., Marchand, J., Bidan, G., Teoule, R. and Mathis, G.: Polypyrrole DNA chip on a silicon device: Example of hepatitis C virus genotyping. Anal. Biochem. 255, 188 (1998).CrossRefGoogle ScholarPubMed
21Korri-Youssoufi, H., Garnier, F., Srivastava, P., Godillot, P. and Yassar, A.: Toward bioelectronics: Specific DNA recognition based on an oligonucleotide-functionalized polypyrrole. J. Am. Chem. Soc. 119, 7388 (1997).CrossRefGoogle Scholar
22Bidan, G., Billon, M., Galasso, K., Livache, T., Mathis, G., Roget, A., Torres-Rodriguez, L.M. and Vieil, E.: Electropolymerization as a versatile route for immobilizing biological species onto surfaces: Application to DNA biochips. Appl. Biochem. Biotechnol. 89, 183 (2000).CrossRefGoogle ScholarPubMed
23Bazin, H. and Livache, T.: Peptide- and biotin-oligonucleotide-pyrrole conjugates for electrochemical addressing on silicon chip. Nucleosides Nucleotides 18, 1390 (1999).CrossRefGoogle Scholar
24Nagahara, S. and Matsuda, T.: Hydrogel formation via hybridization of oligonucleotides derivatized in water-soluble vinyl polymers. Polym. Gels Networks 4, 111 (1996).CrossRefGoogle Scholar
25Watson, K.J., Park, S. and Mirkin, C.A.: DNA-block copolymer conjugates. J. Am. Chem. Soc. 123, 5592 (2001).CrossRefGoogle ScholarPubMed
26Lin, D.C., Yurke, B. and Langrana, N.A.: Mechanical properties of a reversible, DNA-crosslinked polyacrylamide hydrogel. J. Biomech. Eng. 126, 104 (2004).CrossRefGoogle ScholarPubMed
27Kopecek, J.: Polymer chemistry: Swell gels. Nature 417, 388 (2002).CrossRefGoogle ScholarPubMed
28Molloy, P.J., Smith, M.J. and Cowling, M.J.: The effects of salinity and temperature on the behaviour of polyacrylamide gels. Mater. Des. 21, 169 (2000).CrossRefGoogle Scholar
29de Gennes, P.G., Okumura, K., Shahinpoor, M. and Kim, K.J.: Mechanoelectric effects in ionic gels. Europhys. Lett. 50, 513 (2000).CrossRefGoogle Scholar
30Dagani, R.: Intelligent gels. Chem. Eng. News 75, 26 (1997).CrossRefGoogle Scholar
31Osada, Y. and Ross-Murphy, S.B.: Intelligent gels. Sci. Am. 268, 82 (1993).CrossRefGoogle Scholar
32Osada, Y., Okuzaki, H. and Hori, H.: A polymer gel with electrically driven motility. Nature 355, 242 (1992).CrossRefGoogle Scholar
33Osada, Y. and Matsuda, A.: Shape memory in hydrogels. Nature 376, 219 (1995).CrossRefGoogle ScholarPubMed
34Schroder, U.P. and Oppermann, W. In Physical Properties of Polymeric Gels, edited by Cohen, J.P. Addad (John Wiley & Sons, Chichester, U.K., 1996), pp. 1938.Google Scholar
35Tanaka, T.: Gels. Sci. Am. 244, 124 (1981).CrossRefGoogle ScholarPubMed
36Grimshaw, P.E., Nussbaum, J.H., Grodzinsky, A.J. and Yarmush, M.L.: Kinetics of electrically and chemically induced swelling in polyelectrolyte gels. J. Chem. Phys. 93, 4462 (1990).CrossRefGoogle Scholar
37Grimshaw, P.E., Grodzinsky, A.J., Yarmush, M.L. and Yarmush, D.M.: Selective augmentation of macromolecular transport in gels by electrodiffusion and electrokinetics. Chem. Eng. Sci. 45, 2917 (1990).CrossRefGoogle Scholar
38Horkay, F., Tasaki, I. and Basser, P.J.: Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 1, 84 (2000).CrossRefGoogle ScholarPubMed
39Fuller, B.: Tensegrity. Portfolio Art News Annu. 4, 112 (1961).Google Scholar
40Ingber, D.E.: Tensegrity I. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157 (2003).CrossRefGoogle ScholarPubMed
41Ingber, D.E.: Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 59, 575 (1997).CrossRefGoogle ScholarPubMed
42Goddard, N.L., Bonnet, G., Krichevsky, O. and Libchaber, A.: Sequence dependent rigidity of single stranded DNA. Phys. Rev. Lett. 85, 2400 (2000).CrossRefGoogle ScholarPubMed
43Smith, S.B., Cui, Y. and Bustamante, C.: Overstretching B-DNA: The elastic response of individual double- stranded and single-stranded DNA molecules. Science 271, 795 (1996).CrossRefGoogle ScholarPubMed
44Bustamante, C., Bryant, Z. and Smith, S.B.: Ten years of tension: Single-molecule DNA mechanics. Nature 421, 423 (2003).CrossRefGoogle ScholarPubMed
45Visscher, K., Schnitzer, M.J. and Block, S.M.: Single kinesin molecules studied with a molecular force clamp. Nature 400, 184 (1999).CrossRefGoogle ScholarPubMed
46Mahadevan, L. and Matsudaira, P.: Motility powered by supramolecular springs and ratchets. Science 288, 95 (2000).CrossRefGoogle ScholarPubMed
47Lin, D.C., Yurke, B. and Langrana, N.A.: Use of rigid spherical inclusions in Young’s moduli determination: Application to DNA-crosslinked gels. J. Biomech. Eng. (in press, 2005).CrossRefGoogle ScholarPubMed
48Lin, D.C., Langrana, N.A. and Yurke, B.: Force-displacement relationships for spherical inclusions in finite elastic media. J. Appl. Phys. 97, 043510 (2005).CrossRefGoogle Scholar
49Reynaldo, L.P., Vologodskii, A.V., Neri, B.P. and Lyamichev, V.I.: The kinetics of oligonucleotide replacements. J. Mol. Biol. 297, 511 (2000).CrossRefGoogle ScholarPubMed
50Wetmur, J.G. and Davidson, N.: Kinetics of renaturation of DNA. J. Mol. Biol. 31, 349 (1968).CrossRefGoogle ScholarPubMed
51de Gennes, P.G.: Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).Google Scholar
52Sperling, L.H.: Introduction to Physical Polymer Science, 3rd ed. (John Wiley & Sons, New York, 2001).Google Scholar
53Bloomfield, V.A., Crothers, D.M. and Tinoco, I.: Nucleic Acids: Structures, Properties, and Functions (University Science Books, Sausalito, CA, 2000).Google Scholar
54SantaLucia, J. Jr.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. USA 95, 1460 (1998).CrossRefGoogle ScholarPubMed