Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T21:13:59.981Z Has data issue: false hasContentIssue false

Inducing order using nanolaminate templates

Published online by Cambridge University Press:  17 January 2011

Christine A. Orme*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Babak Sadigh
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Michael P. Surh
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Jennifer A. Vandersall
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Peter Bedrossian
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
William D. Wilson
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Troy W. Barbee Jr.*
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
Peter T. Beernink
Affiliation:
Children’s Hospital Oakland Research Institute, Oakland, California 94609
*
a)Address correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Technological progress in the synthesis and characterization of nanometer-scale structures has improved understanding of molecular and colloidal aggregation, self-assembly, and crystal growth. While substrates are commonly used to control nucleation and growth in metal and semiconductor crystals, their use in protein epitaxy has been limited by the lack of substrate structures commensurate with protein sizes. In this paper we describe the use of polished cross sections of amorphous alumina–silica nanolaminates whose periods varied from 8 to 200 nm in the formation of self-assembled monolayers of the protein macromolecule aspartate transcarbamoylase (ATCase). Scanning force microscopy images of rapidly deposited ATCase demonstrates one-dimensional protein ordering along 13.5 nm wide silica nanolaminate. Numerical studies of irreversible adhesion indicate that patterning can induce a higher degree of ordering by varying the substrate periodicity. We expect this to have implications for nucleation and growth of both two-dimensional crystalline layers and bulk protein crystals.

Type
Reviews
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Grzybowski, B.A., Wilmer, C.E., Kim, J., Browne, K.P., and Bishop, K.J.M.: Self-assembly: From crystals to cells. Soft Matter 5, 1110 (2009).CrossRefGoogle Scholar
2.van Blaaderen, A., Ruel, R., and Wiltzius, P.: Template-directed colloidal crystallization. Nature 385, 321 (1997).CrossRefGoogle Scholar
3.Aizenberg, J., Braun, P.V., and Wiltzius, P.: Patterned colloidal deposition controlled by electrostatic and capillary forces. Phys. Rev. Lett. 84, 2997 (2000).CrossRefGoogle ScholarPubMed
4.Lin, K.H., Crocker, J.C., Prasad, V., Schofield, A., Weitz, D.A., Lubensky, T.C., and Yodh, A.G.: Entropically driven colloidal crystallization on patterned surfaces. Phys. Rev. Lett. 85, 1770 (2000).CrossRefGoogle ScholarPubMed
5.Saridakis, E. and Chayen, N.E.: Towards a ‘universal’ nucleant for protein crystallization. Trends Biotechnol. 27, 99 (2009).CrossRefGoogle ScholarPubMed
6.Galli, C., Coen, M.C., Hauert, R., Katanaev, V.L., Wymann, M.P., Groning, P., and Schlapbach, L.: Protein adsorption on topographically nanostructured titanium. Surf. Sci. 474, L180 (2001).CrossRefGoogle Scholar
7.McPherson, A. and Shlichta, P.: Facilitation of the growth of protein crystals by heterogeneous/epitaxial nucleation. J. Cryst. Growth 85, 206 (1987).CrossRefGoogle Scholar
8.McPherson, A. and Shlichta, P.: Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science 239, 385 (1988).CrossRefGoogle ScholarPubMed
9.Barbee, T.W.: In Synthetic Modulated Structures, edited by Chang, L. and Giessen, B.C. (Academic Press, New York, 1985), p. 313.CrossRefGoogle Scholar
10.Barbee, T.W.: In Physics, Fabrication and Applications of Multilayered Structures, edited by Dhez, P. and Weisbach, C. (Plenum Press, New York, 1988), p. 17.CrossRefGoogle Scholar
11.Barbee, T.W. and Keith, D.L.: Synthesis of metastable materials by sputter deposition techniques. J. Met. 32, 11 (1980).Google Scholar
12.Barbee, T.W., Keith, D.L., Nagel, L., and Tiller, W.A.: Controlled reactive sputter synthesis of refractory oxides—SiO x the silicon–oxygen system. J. Electrochem. Soc. 131, 434 (1984).CrossRefGoogle Scholar
13.Hodge, A.M., Wang, Y.M., and Barbee, T.W.: Large-scale production of nano-twinned, ultrafine-grained copper. Mater. Sci. Eng., A 429, 272 (2006).CrossRefGoogle Scholar
14.Wang, Y.M., Li, J., Hamza, A.V., and Barbee, T.W.: Ductile crystal line-amorphous nanolaminates. Proc. Natl. Acad. Sci. USA 104, 11155 (2007).CrossRefGoogle ScholarPubMed
15.Barbee, T.W.: Sputtered layered synthetic microstructure (LSM) dispersion elements, in Proc. Topical Conference on Low Energy X-Ray Diagnostic (Monterey, CA, 1981) p. 131.Google Scholar
16.Barbee, T.W.: Multilayers for x-ray optics. Opt. Eng. 25, 898 (1986).CrossRefGoogle Scholar
17.Walker, A.B.C., Barbee, T.W., Hoover, R.B., and Lindblom, J.F.: Soft-x-ray images of the solar corona with a normal-incidence cassegrain multilayer telescope. Science 241, 1781 (1988).CrossRefGoogle ScholarPubMed
18.Shute, C.J., Myers, B.D., Xie, S., Barbee, T.W., Hodge, A.M., and Weertman, J.R.: Microstructural stability during cyclic loading of multilayer copper/copper samples with nanoscale twinning. Scr. Mater. 60, 1073 (2009).CrossRefGoogle Scholar
19.Bravman, J.C. and Sinclair, R.: The preparation of cross-section specimens for transmission electron-microscopy. J. Electron Microsc. Tech. 1, 53 (1984).CrossRefGoogle Scholar
20.Wall, M.A.: Specimen preparation of freestanding, thick-metal, multilayered films in cross-section. Microsc. Res. Tech. 27, 262 (1994).CrossRefGoogle ScholarPubMed
21.Cherepy, N.J., Shen, T.H., Esposito, A.P., and Tillotson, T.M.: Characterization of an effective cleaning procedure for aluminum alloys: Surface enhanced Raman spectroscopy and zeta potential analysis. J. Colloid Interface Sci. 282, 80 (2005).CrossRefGoogle ScholarPubMed
22.Stumm, W.: Chemistry of the Solid-Water Interface (John Wiley & Sons, New York, 1992).Google Scholar
23.Kosmulski, M.: A literature survey of the differences between the reported isoelectric points and their discussion. Colloids Surf., A 222, 113 (2003).CrossRefGoogle Scholar
24.Kosmulski, M.: PH-dependent surface charging and points of zero charge. IV. Update and new approach. J. Colloid Interface Sci. 337, 439 (2009).CrossRefGoogle ScholarPubMed
25.Edge, V., Allewell, N.M., and Sturtevant, J.M.: Differential scanning calorimetric study of the thermal-denaturation of aspartate transcarbamoylase of Escherichia-coli. Biochemistry 27, 8081 (1988).CrossRefGoogle ScholarPubMed
26.Graf, R. and Schachman, H.K.: Random circular permutation of genes and expressed polypeptide chains: Application of the method to the catalytic chains of aspartate transcarbamoylase. Proc. Natl. Acad. Sci. USA 93, 11591 (1996).CrossRefGoogle Scholar
27.Ke, H-M., Honzatko, R.B., and Lipscomb, W.N.: Structure of unligated aspartate carbamoyltransferase of Escherichia coli at 2.6 Å resolution. Proc. Natl. Acad. Sci. USA 81, 4037 (1984).CrossRefGoogle ScholarPubMed
28.Honzatko, R.B., Crawford, J.L., Monaco, H.L., Ladner, J.E., Edwards, B.F.P., Evans, D.R., Warren, S.G., Wiley, D.C., Ladner, R.C., and Lipscomb, W.N.: Crystal and molecular structures of native and CTP-liganded aspartate carbamoyltransferase from Escherichia coli. J. Mol. Biol. 160, 219 (1982).Google Scholar
29.Stieglitz, K.A., Xia, J.R., and Kantrowitz, E.R.: The first high pH structure of Escherichia coli aspartate transcarbamoylase. Proteins. 74, 318 (2009).CrossRefGoogle ScholarPubMed
30.Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R., and Bairoch, A.: In The Proteomics Protocols Handbook, edited by Walker, J.M. (Humana Press, New York City, 2005) p. 571.CrossRefGoogle Scholar
31.Schonafinger, A., Morbitzer, A., Kress, D., Essen, L.O., Noll, F., and Hampp, N.: Morphology of dry solid-supported protein monolayers dependent on the substrate and protein surface properties. Langmuir 22, 7185 (2006).CrossRefGoogle ScholarPubMed
32.Adamczyk, Z., Nattich, M., and Barbasz, J.: Deposition of colloidal particles at heterogeneous and patterned surfaces. Adv. Colloid Interface Sci. 147, 2 (2009).CrossRefGoogle ScholarPubMed
33.Rizwan, T. and Bhattacharjee, S.: Particle deposition onto charge-heterogeneous substrates. Langmuir 25, 4907 (2009).CrossRefGoogle ScholarPubMed
34.Giacomelli, C.E. and Norde, W.: The adsorption-desorption cycle. Reversibility of the BSA-silica system. J. Colloid Interface Sci. 233, 234 (2001).CrossRefGoogle ScholarPubMed
35.Norde, W., MacRitchie, F., Novika, G., and Lyklema, J.: Protein adsorption at solid liquid interfaces. J. Colloid Interface Sci. 112, 447 (1986).CrossRefGoogle Scholar
36.Asthagiri, D. and Lenhoff, A.M.: Influence of structural details in modeling electrostatically driven protein adsorption. Langmuir 13, 6761 (1997).CrossRefGoogle Scholar
37.Ellis, M., Kong, C.Y., and Muthukumar, M.: Polyelectrolyte adsorption on heterogeneously charged surfaces. J. Chem. Phys. 112, 8723 (2000).CrossRefGoogle Scholar
38.Mashl, R.J. and Gronbech-Jensen, N.: Effective interactions between rigid polyelectrolytes and like-charged planar surfaces. J. Chem. Phys. 109, 4617 (1998).CrossRefGoogle Scholar
39.Iler, R.K.: The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (John Wiley & Sons, Inc., 1979).Google Scholar
40.Kirby, B.J. and Hasselbrink, E.F.J.: Zeta potential of microfluidic substrates. Electrophoresis 25, 187 (2004).CrossRefGoogle ScholarPubMed
41.Oberholzer, M.R., Stankovich, J.M., Carnie, S.L., Chan, D.Y.C., and Lenhoff, A.M.: 2-D and 3-D interactions in random sequential adsorption of charged particles. J. Colloid Interface Sci. 194, 138 (1997).CrossRefGoogle ScholarPubMed
42.Onoda, G.Y. and Liniger, E.G.: Experimental-determination of the random-parking limit in 2 dimensions. Phys. Rev. A 33, 715 (1986).CrossRefGoogle Scholar