Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T04:29:19.207Z Has data issue: false hasContentIssue false

Indentation load–displacement curve, plastic deformation, and energy

Published online by Cambridge University Press:  31 January 2011

J. Malzbender*
Affiliation:
Laboratory of Solid State and Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
G. de With
Affiliation:
Laboratory of Solid State and Materials Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
*
a) Address all correspondence to this author. Current address: Institute for Materials and Processes in Energy Systems, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany. e-mail: [email protected]
Get access

Abstract

Various methods to access indentation data are considered on the basis of the load P–displacement h curve, its derivative, or its integral. This paper discusses and extends the various analytical models to estimate the indentation P–h curve, the slope, and the dissipated energy to aid the development of a concise methodology to analyze indentation data. Special consideration is given to the effect of pile-up and sink-in. Relationships for sharp and spherical indenters are presented and in addition for sharp indenters with a rounded tip. An overview over analytic expressions for the P–h curve is given and compared to finite element simulations and experimental data. An expression derived for the representative strain at the onset of yield under sharp and spherical indenters compares well with literature results. The effect of a rounded tip on the yielding under a sharp indenter is discussed. The ratio of loading to unloading slope and the ratio of the plastically dissipated energy to the total energy is related to hardness and elastic modulus. In combination these ratios can be used to determine the strain-hardening coefficient.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pharr, G.M. and Oliver, W.C., MRS Bull. 7, 28 (1992).CrossRefGoogle Scholar
2.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
3.Chechenin, N.G., Boettiger, J., and Krog, J.P., Thin Solid Films 261, 219 (1995).CrossRefGoogle Scholar
4.Chechenin, N.G., Boettiger, J., and Krog, J.P., Thin Solid Films 261, 228 (1995).Google Scholar
5.Chechenin, N.G., Thin Solid Films 304, 78 (1997).Google Scholar
6.Chen, X. and Vlassak, J.J., J. Mater. Res. 16, 2974 (2001).CrossRefGoogle Scholar
7.Malzbender, J., With, G. de, and Toonder, J.M.J. den, Thin Solid Films 372, 134 (2000).CrossRefGoogle Scholar
8.Spence, D.A., J. Elast. 5, 297 (1975).CrossRefGoogle Scholar
9.Fischer-Cripps, A.C. and Collins, R.E., J. Mater. Sci. 29, 2216 (1994).Google Scholar
10.Field, J.S. and Swain, M.V., J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
11.Korunsky, A.M., J. Strain Anal. 34, 391 (2001).Google Scholar
12.Hainsworth, S.V., Chandler, H.W., and Page, T.F., J. Mater. Res. 11, 1987 (1995).Google Scholar
13.Larsson, P-L., Giannakopoulos, A.E., Soederlund, E., Rowcliffe, D.J., and Vestergaard, R., Int. J. Solids Struct. 33, 221 (1996).Google Scholar
14.Cheng, Y-T. and Cheng, C-M., J. Mater. Res. 14, 3493 (1999).Google Scholar
15.Storakers, B. and Larsson, P.L., J. Mech. Phys. Solids 42, 307 (1994).CrossRefGoogle Scholar
16.Hill, R., Storakers, B., and Zdunek, A.B., Proc. Roy. Soc. London, A 423, 301 (1989).Google Scholar
17.Bower, A.F., Fleck, N.A., Needleman, A., and Ogbonna, N., Proc. R. Soc. London, A 41, 97 (1993).Google Scholar
18.Dao, M., Chollacoop, N., Vliet, K.J. van, Venkatesh, T.A., and Suresh, S., Acta Mater. 49, 3899 (2001).CrossRefGoogle Scholar
19.Malzbender, J., Toonder, J.M.J. den, and With, G. de, J. Mater. Res. 5, 1209 (2000).Google Scholar
20.Malzbender, J. and With, G. de, Surf. Coat. Technol. 127, 266 (2000).Google Scholar
21.Malzbender, J. and With, G. de, Surf. Coat. Technol. 137, 72 (2001).Google Scholar
22.Hertz, H., Miscellaneous Papers (MacMillan, London, United Kingdom, 1896).Google Scholar
23.Fischer-Cripps, A.C., Introduction to Contact Mechanics (Springer, Berlin, Germany, 2000).Google Scholar
24.Chaudhri, M.M., J. Mater. Res. 16, 336 (2001).Google Scholar
25.Lo, R.Y. and Bogy, D.B., J. Mater. Res. 14, 2276 (1999).Google Scholar
26.Fischer-Cripps, A.C., J. Mater. Res. 16, 3050 (1999).Google Scholar
27.Hay, J.C., Bolshakov, A., and Pharr, G.M., J. Mater. Res. 14, 2296 (1999).Google Scholar
28.Hay, J.L. and Wolff, P.J., J. Mater. Res. 16, 1280 (2001).CrossRefGoogle Scholar
29.Cheng, Y-T. and Cheng, C-M., Surf. Coat. Technol. 417, 133134 (2000).Google Scholar
30.Alcala, J., Baronr, A.C., and Anglada, M., Acta Mater. 48, 3451 (2000).Google Scholar
31.Malzbender, J. and With, G. de, Surf. Coat. Technol. 135, 60 (2000).Google Scholar
32.Taljat, B. and Zacharia, T., Int. J. Solids Struct. 35, 4411 (1998).CrossRefGoogle Scholar
33.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985).CrossRefGoogle Scholar
34.Fischer-Cripps, A.C., J. Mater. Sci. 34, 129 (1999).Google Scholar
35.Marsh, D.M., Proc. Roy. Soc. A279, 420 (1964).Google Scholar
36.Hirst, W. and Howse, M.G.J.W., Proc. Roy. Soc. A311, 429 (1969).Google Scholar
37.Giannakopoulos, A.E., Larsson, P-L., and Vestergaard, R., Int. J. Solids Struct. 31, 2679 (1994).CrossRefGoogle Scholar
38.Cheng, Y-T. and Cheng, C-M., Philos. Mag. Lett. 77, 39 (1998).Google Scholar
39.Shimamoto, A., Tanaka, K., Akiyama, Y., and Yoshizake, H., Philos. Mag. A 74, 1097 (1996).Google Scholar
40.Murakami, Y., Tanaka, K., Itokatu, M., and Shimamoto, A., Philos. Mag. A 69, 1131 (1994).Google Scholar
41.Sneddon, I.N., Int. J. Eng. Sci. 3, 47 (1965).CrossRefGoogle Scholar
42.Cheng, Y-T. and Cheng, C-M., J. Mater. Res. 13, 1059 (1998).Google Scholar
43.Larsson, P-L., Int. J. Mech. Sci. 43, 895 (2001).CrossRefGoogle Scholar
44.Tabor, D., The Hardness of Metals (Oxford, New York, 1951).Google Scholar
45.Shorshorov, M.K., Bulychev, S.I., and Alekin, V.P., Sov. Phys. Dokl. 26, 769 (1981).Google Scholar
46.Cheng, Y-T. and Cheng, C-M., Appl. Phys. Lett. 73, 614 (1998).Google Scholar
47.Cheng, Y-T., Li, Z., and Cheng, C-M., in Fundamentals of Nanoindentation and Nanotribology II, edited by Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. (MRS Proc. 649, Warrendale, PA, 2001), p. Q1.1.Google Scholar
48.Milman, Y.V., Galanov, B.A., and Chugunova, S.I., Acta Metall. Mater. 41, 2523 (1993).CrossRefGoogle Scholar
49.Marx, V. and Balke, H., Acta Mater. 45, 3791 (1997).CrossRefGoogle Scholar
50.Venkatesh, T.A., Vleit, K.J. van, Ginnakopoulos, A.E., and Suresh, S., Scr. Mater. 42, 833 (2000).Google Scholar
51.Bulychev, S.I., Tech. Phys. 44, 775 (1999).Google Scholar
52.Sakai, M., Acta Metall. Mater. 41, 1751 (1993).CrossRefGoogle Scholar
53.Tuck, J.R., Korunsky, A.M., Bull, S.J., and Davidson, R.I., Surf. Coat. Technol. 137, 217 (2001).Google Scholar
54.Suresh, S. and Giannakopoulos, A.E., Acta Mater. 46, 5755 (1998).Google Scholar
55.Swadener, J.G., Taljat, B., and Pharr, G.M., J. Mater. Res. 16, 2091 (2001).Google Scholar
56.Carlsson, S. and Larsson, P.L., Acta Mater. 49, 2179 (2001).CrossRefGoogle Scholar