Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T04:17:36.367Z Has data issue: false hasContentIssue false

Incorporation of Pb into the Crystal Structure of Ba6−3xNd8+2xTi18O54 Solid Solution

Published online by Cambridge University Press:  31 January 2011

Mojca Podlipnik
Affiliation:
“Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
Danilo Suvorov
Affiliation:
“Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
Matjaz Valant
Affiliation:
“Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
Drago Kolar
Affiliation:
“Jozef Stefan” Institute, Jamova 39, 1000 Ljubljana, Slovenia
Get access

Abstract

Investigations of a substitutional mechanism of Pb incorporation into the crystal structure of Ba6−3xNd8+2xTi18O54 performed by x-ray diffraction analysis, scanning electron microscopy, and energy dispersive and wavelength dispersive x-ray spectroscopy revealed that Pb2+ substitutes for Ba2+ according to the formula (Ba1−zPbz)6−3xNd8+2xTi18O54. The solid solubility limit for 0.5 = x = 0.6 compositions was determined to be at 0.35 ≤ z < 0.4 (nominal composition) which, according to measurements of PbO loss occurring during the heat treatment, gives 0.30 ≤ z < 0.35 (analyses of matrix phase). Increasing the Pb2+ concentration in (Ba1−zPbz)4.5Nd9Ti18O54, results in tf decreasing from an initial positive value (80 ppm/K) to a negative value at the solid solubility limit (−25 ppm/K at z = 0.35). In the same concentration range the Q-value decreases from an initial 2000 to 1250 (z. = 0.35), measured at 4 GHz, while permittivity remains almost constant (k = 87 ± 1.5). After exceeding the solid solubility limit of Pb2+ in (Ba1−zPbz)4.5Nd9Ti18O54 the appearance of secondary phases (Nd4Ti9O24 and Pb-rich phase at grain boundaries) changes the trends of the microwave dielectric properties; permittivity decreases, Q-value remains almost constant, and Tf increases.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Matveeva, R.G., Varfolomeev, M.B., and Il'yuhchenko, L.S., Russ. J. Inorg. Chem. 29, 17 (1984).Google Scholar
2.Kolar, D., Gaberscek, S., Volavsek, B., Parker, H.S., and Roth, R.S., J. Solid State Chem. 38, 158 (1981).CrossRefGoogle Scholar
3.Rawn, C.J., Birnie, D.P., Bruck, M.A., Enemark, J.H., and Roth, R.S., J. Mater. Res. 13, 187 (1998).CrossRefGoogle Scholar
4.Ohsato, H., Ohhashi, T., Nishigaki, S., Okuda, T., Sumia, K., and Suzuki, S., Jpn. J. Appl. Phys. 32, 4323 (1993).CrossRefGoogle Scholar
5.Negas, T. and Davies, P.K., Ceram. Trans. 53, 179 (1995).Google Scholar
6.Valant, M., Suvorov, D., and Rawn, C.J., Jpn. J. Appl. Phys. 38 (5A), 2820 (1999).CrossRefGoogle Scholar
7.Suvorov, D., Valant, M., and Kolar, D., J. Mater. Sci. 32, 6483 (1997).CrossRefGoogle Scholar
8.Kolar, D., Gaberšček, S., Stadler, Z., and Suvorov, D., Ferroelectrics 27, 269 (1980).CrossRefGoogle Scholar
9.Valant, M., Suvorov, D., and Kolar, D., J. Mater. Res. 11, 928 (1996).CrossRefGoogle Scholar
10.Wakino, K., Minai, K., and Tamura, H., J. Am. Ceram. Soc. 67, 278 (1984).CrossRefGoogle Scholar
11.Kageyama, K. and Takata, M., Jpn. J. Appl. Phys. 24, Suppl. 24–2, 1045 (1985).Google Scholar
12.Valant, M., Arčon, I., Suvorov, D., Kodre, A., Negas, T., and Frahm, R., J. Mater. Res. 12, 799 (1997).CrossRefGoogle Scholar
13.Hardtl, K.H. and Rau, H., Solid State Comm. 7, 41 (1969).CrossRefGoogle Scholar
14.Itoh, T. and Rudokas, R.S., IEEE Trans. MTT–25, 52 (1977).Google Scholar
15.Kajfez, D. and Hwan, E.J., IEEE Trans. MTT–32, 666 (1984).Google Scholar
16.Shannon, R.D., Acta Crystallogr Sect. A, 32, 751 (1976).CrossRefGoogle Scholar
17.Shannon, R.D., J. Appl. Phys. 73, 348 (1993).CrossRefGoogle Scholar
18.Takahashi, J., Kageyama, K., and Kodaira, K., Jpn. J. Appl. Phys. 32, 4327 (1993).CrossRefGoogle Scholar