Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T20:05:52.010Z Has data issue: false hasContentIssue false

In vitro and in vivo biocompatibility of polyurethanes synthesized with castor oil polyols for biomedical devices

Published online by Cambridge University Press:  21 January 2019

Yomaira L. Uscátegui
Affiliation:
Doctoral Program in Bioscience, Research Group on Energy, Materials and Environment, Universidad de La Sabana, Chía, Cundinamarca 53753, Colombia
Luis E. Díaz
Affiliation:
Research Group on Bioprospecting, Universidad de La Sabana, Chía, Cundinamarca 53753, Colombia
Manuel F. Valero*
Affiliation:
Chemical Engineering Program, Research Group on Energy, Materials and Environment, Universidad de La Sabana, Chía, Cundinamarca 53753, Colombia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Polyurethanes (PUs) were synthesized with polyols derived from castor oil and isophorone diisocyanate. The materials were evaluated for their mechanical properties using stress–strain curves, thermogravimetric analysis, differential scanning calorimetry, and contact angle analysis. The biological response of the materials was evaluated by determining their cell viability in vitro, antimicrobial activity against Escherichia coli and Pseudomonas aeruginosa, and biological response in vivo of PUs by means of implanting them in Wistar rats. The cell proliferation on the materials was analyzed using mouse fibroblast L929, human fibroblast MRC-5, and adult human dermal fibroblast (HDFa) cells by the ISO 10993-5 method. The materials showed no toxic effects and promoted cell proliferation. Experiments performed in vivo for 30 days in mice showed that the materials neither affected the wound healing process nor caused adverse effects or severe injuries in the dorsal mid-cervical tissue or organs on histological evaluation. PUs synthesized can be used in biomedical devices.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Vogels, R.R., Lambertz, A., Schuster, P., Jockenhoevel, S., Bouvy, N.D., Disselhorst-Klug, C., Neumann, U.P., Klinge, U., and Klink, C.D.: Biocompatibility and biomechanical analysis of elastic TPU threads as new suture material. J. Biomed. Mater. Res., Part B 105, 99 (2017).CrossRefGoogle ScholarPubMed
Israelsson, L.A. and Millbourn, D.: Closing midline abdominal incisions. Langenbeck’s Arch. Surg. 397, 1201 (2012).CrossRefGoogle ScholarPubMed
Zhang, G., Ren, T., Zhang, S., Zeng, X., and van der Heide, E.: Study on the tribological behavior of surgical suture interacting with a skin substitute by using a penetration friction apparatus. Colloids Surf., B 162, 228 (2018).CrossRefGoogle Scholar
Arévalo, F., Uscátegui, Y.L., Díaz, L., Cobo, M., and Valero, M.F.: Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil. J. Biomater. Appl. 31, 708 (2016).CrossRefGoogle ScholarPubMed
Vannozzi, L., Ricotti, L., Santaniello, T., Terencio, T., Oropesa-Nunez, R., Canale, C., Borghi, F., Menciassi, A., and Lenardi, C.: 3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells. J. Mech. Behav. Biomed. Mater. 75, 147 (2017).CrossRefGoogle ScholarPubMed
Meskinfam, M., Bertoldi, S., Albanese, N., Cerri, A., Tanzi, M.C., Imani, R., Baheiraei, N., Farokhi, M., and Farè, S.: Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Mater. Sci. Eng., C 82, 130 (2018).CrossRefGoogle ScholarPubMed
Park, H., Gong, M.S., Park, J.H., Moon, S.I., Wall, I.B., Kim, H.W., Lee, J.H., and Knowles, J.C.: Silk fibroin-polyurethane blends: Physical properties and effect of silk fibroin content on viscoelasticity, biocompatibility and myoblast differentiation. Acta Biomater. 9, 8962 (2013).CrossRefGoogle ScholarPubMed
Mi, H.Y., Jing, X., Hagerty, B.S., Chen, G., Huang, A., and Turng, L.S.: Post-crosslinkable biodegradable thermoplastic polyurethanes: Synthesis, and thermal, mechanical, and degradation properties. Mater. Des. 127, 106 (2017).CrossRefGoogle Scholar
Solanki, A., Das, M., and Thakore, S.A.: A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydr. Polym. 181, 1003 (2018).CrossRefGoogle ScholarPubMed
Da, L., Gong, M., Chen, A., Zhang, Y., Huang, Y., Guo, Z., Li, S., Li-Ling, J., Zhang, L., and Xie, H.: Composite elastomeric polyurethane scaffolds incorporating small intestinal submucosa for soft tissue engineering. Acta Biomater. 59, 45 (2017).CrossRefGoogle ScholarPubMed
Zia, F., Zia, K.M., Zuber, M., Tabasum, S., and Rehman, S.: Heparin based polyurethanes: A state-of-the-art review. Int. J. Biol. Macromol. 84, 101 (2016).CrossRefGoogle ScholarPubMed
Shahrousvand, M., Sadeghi, G.M.M., Shahrousvand, E., Ghollasi, M., and Salimi, A.: Superficial physicochemical properties of polyurethane biomaterials as osteogenic regulators in human mesenchymal stem cells fates. Colloids Surf., B 156, 292 (2017).CrossRefGoogle ScholarPubMed
Laube, T., Weisser, J., Berger, S., Börner, S., Bischoff, S., Schubert, H., Gajda, M., Bräuer, R., and Schnabelrauch, M.: In situ foamable, degradable polyurethane as biomaterial for soft tissue repair. Mater. Sci. Eng., C 78, 163 (2017).CrossRefGoogle ScholarPubMed
Gamerith, C., Herrero Acero, E., Pellis, A., Ortner, A., Vielnascher, R., Luschnig, D., Zartl, B., Haernvall, K., Zitzenbacher, S., Strohmeier, G., Hoff, O., Steinkellner, G., Gruber, K., Ribitsch, D., and Guebitz, G.M.: Improving enzymatic polyurethane hydrolysis by tuning enzyme sorption. Polym. Degrad. Stab. 132, 69 (2016).CrossRefGoogle Scholar
Ng, W.S., Lee, C.S., Chuah, C.H., and Cheng, S.F.: Preparation and modification of water-blown porous biodegradable polyurethane foams with palm oil-based polyester polyol. Ind. Crops Prod. 97, 65 (2017).CrossRefGoogle Scholar
Jutrzenka Trzebiatowska, P., Santamaria Echart, A., Calvo Correas, T., Eceiza, A., and Datta, J.: The changes of crosslink density of polyurethanes synthesised with using recycled component. Chemical structure and mechanical properties investigations. Prog. Org. Coat. 115, 41 (2018).CrossRefGoogle Scholar
Gil-Castell, O., Badia, J.D., Ontoria-Oviedo, I., Castellano, D., Marco, B., Rabal, A., Bou, J.J., Serra, A., Monreal, L., Blanes, M., Sepúlveda, P., and Ribes-Greus, A.: In vitro validation of biomedical polyester-based scaffolds: Poly(lactide-co-glycolide) as model-case. Polym. Test. 66, 256 (2018).CrossRefGoogle Scholar
Mekewi, M.A., Ramadan, A.M., ElDarse, F.M., Abdel Rehim, M.H., Mosa, N.A., and Ibrahim, M.A.: Preparation and characterization of polyurethane plasticizer for flexible packaging applications: Natural oils affirmed access. Egypt. J. Pet. 26, 9 (2017).CrossRefGoogle Scholar
Zhang, C., Garrison, T.F., Madbouly, S.A., and Kessler, M.R.: Recent advances in vegetable oil-based polymers and their composites. Prog. Polym. Sci. 71, 91 (2017).CrossRefGoogle Scholar
Madra, H., Tantekin-Ersolmaz, B., and Guner, F.S.: Monitoring of oil-based polyurethane synthesis by FTIR-ATR. Polym. Test. 28, 773 (2009).CrossRefGoogle Scholar
Pfister, D.P., Xia, Y., and Larock, R.C.: Recent advances in vegetable oil-based polyurethanes. ChemSusChem 4, 703 (2011).CrossRefGoogle ScholarPubMed
Petrović, Z.S., Milic, J., Zhang, F., and Ilavsky, J.: Fast-responding bio-based shape memory thermoplastic polyurethanes. Polymer 121, 26 (2017).CrossRefGoogle ScholarPubMed
Lligadas, G., Ronda, J.C., Galià, M., and Cádiz, V.: Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art. Biomacromolecules 11, 2825 (2010).CrossRefGoogle ScholarPubMed
Jayavani, S., Sunanda, S., Varghese, T.O., and Nayak, S.K.: Synthesis and characterizations of sustainable polyester polyols from non-edible vegetable oils: Thermal and structural evaluation. J. Cleaner Prod. 162, 795 (2017).CrossRefGoogle Scholar
Ismail, E.A., Motawie, A.M., and Sadek, E.M.: Synthesis and characterization of polyurethane coatings based on soybean oil–polyester polyols. Egypt. J. Pet. 20, 1 (2011).CrossRefGoogle Scholar
Calvo-Correas, T., Santamaria-Echart, A., Saralegi, A., Martin, L., Valea, A., Corcuera, M.A., and Eceiza, A.: Thermally-responsive biopolyurethanes from a biobased diisocyanate. Eur. Polym. J. 70, 173 (2015).CrossRefGoogle Scholar
Uscátegui, Y.L., Díaz, L.E., and Valero, M.F.: Revisão. Quim. Nova 41, 434 (2018).Google Scholar
Meneguelli de Souza, L.C., de Carvalho, L.P., Araújo, J.S., de Melo, E.J.T., and Machado, O.L.: Cell toxicity by ricin and elucidation of mechanism of Ricin inactivation. Int. J. Biol. Macromol. 113, 821 (2018).CrossRefGoogle ScholarPubMed
Hejna, A., Kirpluks, M., Kosmela, P., Cabulis, U., Haponiuk, J., and Piszczyk, L.: The influence of crude glycerol and castor oil-based polyol on the structure and performance of rigid polyurethane-polyisocyanurate foams. Ind. Crops Prod. 95, 113 (2017).CrossRefGoogle Scholar
Omonov, T.S., Kharraz, E., and Curtis, J.M.: Camelina (Camelina Sativa) oil polyols as an alternative to Castor oil. Ind. Crops Prod. 107, 378 (2017).CrossRefGoogle Scholar
Uscátegui, Y., Arévalo, F., Díaz, L., Cobo, M., and Valero, M.: Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone. J. Biomater. Sci., Polym. Ed. 27, 1860 (2016).CrossRefGoogle ScholarPubMed
dos Santos, M.R., Alcaraz-Espinoza, J.J., da Costa, M.M., and de Oliveira, H.P.: Usnic acid-loaded polyaniline/polyurethane foam wound dressing: Preparation and bactericidal activity. Mater. Sci. Eng., C 89, 33 (2018).CrossRefGoogle ScholarPubMed
Serrano, C., García-Fernández, L., Fernández-Blázquez, J.P., Barbeck, M., Ghanaati, S., Unger, R., Kirkpatrick, J., Arzt, E., Funk, L., Turón, P., and del Campo, A.: Nanostructured medical sutures with antibacterial properties. Biomaterials 52, 291 (2015).CrossRefGoogle ScholarPubMed
Fabbri, M., Guidotti, G., Soccio, M., Lotti, N., Govoni, M., Giordano, E., Gazzano, M., Gamberini, R., Rimini, B., and Munari, A.: Novel biocompatible PBS-based random copolymers containing PEG-like sequences for biomedical applications: From drug delivery to tissue engineering. Polym. Degrad. Stab. 153, 53 (2018).CrossRefGoogle Scholar
Angeloni, V., Contessi, N., De Marco, C., Bertoldi, S., Tanzi, M.C., Daidone, M.G., and Farè, S.S.: Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis. Acta Biomater. 63, 306 (2017).CrossRefGoogle ScholarPubMed
Gossart, A., Battiston, K.G., Gand, A., Pauthe, E., and Santerre, J.P.: Mono versus multilayer fibronectin coatings on polar/hydrophobic/ionic polyurethanes: Altering surface interactions with human monocytes. Acta Biomater. 66, 129 (2018).CrossRefGoogle ScholarPubMed
Zhang, J., Woodruff, T.M., Clark, R.J., Martin, D.J., and Minchin, R.F.: Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Acta Biomater. 41, 264 (2016).CrossRefGoogle ScholarPubMed
Carriço, C.S., Fraga, T., and Pasa, V.M.: Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols. Eur. Polym. J. 85, 53 (2016).CrossRefGoogle Scholar
Kim, H., Kang, D.H., Kim, M., Jiao, A., Kim, D.H., and Suh, K.Y.: Patterning methods for polymers in cell and tissue engineering. Ann Biomed Eng. 40, 1339 (2012).Google Scholar
Nemir, S. and West, J.L.: Synthetic materials in the study of cell response to substrate rigidity. Ann. Biomed. Eng. 38, 2 (2010).CrossRefGoogle Scholar
Vatankhah, E., Semnani, D., Prabhakaran, M.P., Tadayon, M., Razavi, S., and Ramakrishna, S.: Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater. 10, 709 (2014).CrossRefGoogle ScholarPubMed
Alves, N.O., Da Silva, G.T., Weber, D.M., Luchese, C., Wilhelm, E.A., and Fajardo, A.R.: Chitosan/poly(vinyl alcohol)/bovine bone powder biocomposites: A potential biomaterial for the treatment of atopic dermatitis-like skin lesions. Carbohydr. Polym. 148, 115 (2016).CrossRefGoogle ScholarPubMed
Uscátegui, Y.L., Arévalo-Alquichire, S.J., Gómez-Tejedor, J.A., Vallés-Lluch, A., Díaz, L.E., and Valero, M.F.: Polyurethane-based bioadhesive synthesized from polyols derived from castor oil (Ricinus communis) and low concentration of chitosan. J. Mater. Res. 32, 3699 (2017).CrossRefGoogle Scholar
Zhou, Y., Sheng, D., Liu, X., Lin, C., Ji, F., Dong, I., Xu, S., and Yang, Y.: Synthesis and properties of crosslinking halloysite nanotubes/polyurethane-based solid-solid phase change materials. Sol. Energy Mater. Sol. Cells 174, 84 (2018).CrossRefGoogle Scholar
Sáenz-Pérez, M., Lizundia, E., Laza, J.M., García-Barrasa, J., Vilas, J.L., and León, L.M.: Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) based polyurethanes: Thermal, shape-memory and mechanical behavior. RSC Adv. 6, 69094 (2016).CrossRefGoogle Scholar
Coakley, D.N., Shaikh, F.M., O’Sullivan, K., Kavanagh, E.G., Grace, P.A., and McGloughlin, T.M.: In vitro evaluation of acellular porcine urinary bladder extracellular matrix—A potential scaffold in tissue engineered skin. Wound. Med. 10–11, 9 (2015).CrossRefGoogle Scholar
Totaro, G., Cruciani, L., Vannini, M., Mazzola, G., Di Gioia, D., Celli, A., and Sisti, L.: Synthesis of castor oil-derived polyesters with antimicrobial activity. Eur. Polym. J. 56, 174 (2014).CrossRefGoogle Scholar
Fu, H., Wang, Y., Li, X., and Chen, W.: Synthesis of vegetable oil-based waterborne polyurethane/silver-halloysite antibacterial nanocomposites. Compos. Sci. Technol. 126, 86 (2016).CrossRefGoogle Scholar
Muxika, A., Etxabide, A., Uranga, J., Guerrero, P., and de la Caba, K.: Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Biol. Macromol. 105, 1358 (2017).CrossRefGoogle ScholarPubMed
Gibson-Corley, K.N., Olivier, A.K., and Meyerholz, D.K.: Principles for valid histopathologic scoring in research. Vet. Pathol. 50, 1007 (2013).CrossRefGoogle ScholarPubMed
Inzana, J.A., Schwarz, E.M., Kates, S.L., and Awad, H.A.: Biomaterials approaches to treating implant-associated osteomyelitis. Biomaterials 81, 58 (2016).CrossRefGoogle ScholarPubMed
Gabriel, L.P., Santos, M.E.M., Jardini, A.L., Bastos, G.N.T., Dias, C.G.T., Webster, T.T.J., and Maciel Filho, R.: Bio-based polyurethane for tissue engineering applications: How hydroxyapatite nanoparticles influence the structure, thermal and biological behavior of polyurethane composites. Nanomedicine 13, 201 (2017).CrossRefGoogle ScholarPubMed
Valero, M.F. and Ortegón, Y.: Polyurethane elastomers-based modified castor oil and poly(ε-caprolactone) for surface-coating applications: Synthesis, characterization, and in vitro degradation. J. Elastomers Plast. 47, 360 (2015).CrossRefGoogle Scholar
Rezvanain, M., Ahmad, N., Mohd Amin, M.C.I., and Ng, S.F.: Optimization, characterization, and in vitro assessment of alginate-pectin ionic cross-linked hydrogel film for wound dressing applications. Int. J. Biol. Macromol. 97, 131 (2017).CrossRefGoogle Scholar
Wu, D., Cui, H., Zhu, J., Qin, X., and Xie, T.: Novel amino acid based nanogel conjugated suture for antibacterial application. J. Mater. Chem. B 4, 2606 (2016).CrossRefGoogle Scholar
Garg, B., Sandhu, V., Sood, N., Sood, A., and Malhotra, V.: Histopathological analysis of chronic gastritis and correlation of pathological features with each other and with endoscopic findings. Pol. J. Pathol. 63, 172 (2012).CrossRefGoogle ScholarPubMed