Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T21:35:13.690Z Has data issue: false hasContentIssue false

In situ space-resolved X-ray diffraction and time-resolved EDXD on efficient polymer-based photovoltaic devices: Microstructural properties and aging effects

Published online by Cambridge University Press:  24 January 2017

Francesco Silvestri
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata” Via della Ricerca Scientifica 1, Italy
Amanda Generosi
Affiliation:
Istituto di Struttura della Materia ISM-CNR, Via del Fosso del Cavaliere 100, Roma 00133, Italy
Marco Guaragno
Affiliation:
Istituto di Struttura della Materia ISM-CNR, Via del Fosso del Cavaliere 100, Roma 00133, Italy
Valerio Rossi Albertini
Affiliation:
Istituto di Struttura della Materia ISM-CNR, Via del Fosso del Cavaliere 100, Roma 00133, Italy
Claudio Ferrero
Affiliation:
ESRF—The European Synchrotron 71, av. des Martyrs, Grenoble Cedex 38043, France
Gianpaolo Susanna
Affiliation:
CHOSE-Center for Hybrid and Organic Solar Energy, Department of Electronics Engineering, Università di Roma, Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
Francesca Brunetti
Affiliation:
CHOSE-Center for Hybrid and Organic Solar Energy, Department of Electronics Engineering, Università di Roma, Tor Vergata, Via del Politecnico 1, Roma 00133, Italy
Ivan Davoli
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata” Via della Ricerca Scientifica 1, Italy
Barbara Paci*
Affiliation:
Istituto di Struttura della Materia ISM-CNR, Via del Fosso del Cavaliere 100, Roma 00133, Italy
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Microstructural and morphological features of the layers forming integrated PTB7/PC71BM organic solar cells with Ca/Al cathode are studied. The effects of vacuum treatment on properties and durability were addressed using complementary approaches: time-resolved experiments revealing the structural evolution of the active layers under illumination were conducted combining the in situ energy dispersive X-ray diffraction (EDXD) technique with atomic force microscopy (AFM); space-resolved characterization of the integrated devices was possible via high resolution X-ray diffraction, using a nano-focused synchrotron radiation X-ray beam to discriminate the device components. Active layers surface morphology is stable under illumination and PC71BM structural properties remain unaltered. PTB7 undergoes crystallinity depletion, mainly at the active layer/cathode interface. This effect is actually inhibited in the device submitted to vacuum treatment, proving that this procedure induces stabilization at the cathode’s buried interface, as verified by fourier transform infrared (FTIR) spectroscopy. Importantly, the protective role of the vacuum treatment results in a significant photovoltaic durability enhancement.

Type
Article
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Moritz Riede

References

REFERENCES

Betancur, R., Romero-Gomez, P., Martinez-Otero, A., Elias, X., Maymó, M., and Martorell, J.: Transparent polymer solar cells employing a layered light-trapping architecture. Nat. Photonics 7, 995 (2012).CrossRefGoogle Scholar
Li, G., Zhu, R., and Yang, Y.: Polymer solar cells. Nat. Photonics 6, 153 (2012).Google Scholar
Sariciftci, N.S., Smilowitz, L., Heeger, A.J., and Wudl, F.: Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258, 1474 (1992).Google Scholar
Yu, G., Ga, J., Hummelen, J.C., Wudl, F., and Heeger, A.J.: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270, 1789 (1995).Google Scholar
Brabec, C.J., Sariciftci, N.S., and Hummelen, J.C.: Plastic solar cells. Adv. Funct. Mater. 11, 15 (2001).Google Scholar
Thompson, B.C. and Frechet, J.M.J.: Polymer–fullerene composite solar cells. Angew. Chem., Int. Ed. 47, 58 (2008).CrossRefGoogle ScholarPubMed
Benanti, T.L. and Venkataraman, D.: Organic solar cells: An overview focusing on active layer morphology. Photosynth. Res. 87, 73 (2006).Google Scholar
He, Z., Zhong, C., Su, S., Xu, M., Wu, H., and Cao, Y.: Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 6, 591 (2012).Google Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 46). Prog. Photovoltaics Res. Appl. 23, 805 (2015).Google Scholar
Ye, L., Jing, Y., Guo, X., Sun, H., Zhang, S., Zhang, M., Huo, L., and Hou, J.: Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J. Phys. Chem. C 117, 14920 (2013).Google Scholar
Li, N. and Brabec, C.J.: Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ. Sci. 8, 2902 (2015).Google Scholar
Huang, W., Gann, E., Xu, Z-Q., Thomsen, L., Cheng, Y-B., and McNeill, C.R.: A facile approach to alleviate photochemical degradation in high efficiency polymer solar cells. J. Mater. Chem. A 3, 16313 (2015).CrossRefGoogle Scholar
Kim, W., Kim, J.K., Kim, E., Ahn, T.K., Wang, D.H., and Park, J.H.: Conflicted effects of a solvent additive on PTB7:PC71BM bulk heterojunction solar cells. J. Phys. Chem. C 119, 5954 (2015).Google Scholar
Rivaton, A., Tournebize, A., Gaume, J., Bussier̀e, P-O., Gardette, J-L., and Theŕias, S.: Photostability of organic materials used in polymer solar cells. Polym. Int. 63, 1335 (2014).Google Scholar
Fraga Domínguez, I., Topham, P.D., Bussière, P-O., Bégué, D., and Rivaton, A.: Unravelling the photodegradation mechanisms of a low bandgap polymer by combining experimental and modeling approaches. J. Phys. Chem. C 119, 2166 (2015).Google Scholar
Tremolet de Villers, B.J., O’Hara, K.A., Ostrowski, D.P., Biddle, P.H., Shaheen, S.E., Chabinyc, M.L., Olson, D.C., and Kopidakis, N.: Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers. Chem. Mater. 28(3), 876 (2016).Google Scholar
Uk Lee, J., Woong Jung, J., Woong Jo, J., and Ho Jo, W.: Degradation and stability of polymer-based solar cells. J. Mater. Chem. 22, 24265 (2012).Google Scholar
Sapkota, S.B., Spies, A., Zimmermann, B., Dürr, I., and Würfel, U.: Promising long-term stability of encapsulated ITO-free bulk-heterojunction organic solar cells under different aging conditions. Sol. Energy Mater. Sol. Cells 130, 144 (2014).CrossRefGoogle Scholar
Romero-Gomez, P., Betancur, R., Martinez-Otero, A., Elias, X., Mariano, M., Romero, B., Arredondo, B., Vergaz, R., and Martorell, J.: Enhanced stability in semi-transparent PTB7/PC71BM photovoltaic cells. Sol. Energy Mater. Sol. Cells 137, 44 (2015).Google Scholar
Hains, A.W. and Marks, T.J.: High-efficiency hole extraction/electron-blocking layer to replace PEDOT: PSS in bulk-heterojunction polymer solar cells. Appl. Phys. Lett. 92, 023504 (2008).Google Scholar
Kemerink, M., Timpanaro, S., de Kok, M.M., Meulenkamp, E.A., and Touwslager, F.J.: Three-Dimensional Inhomogeneities in PEDOT: PSS films. J. Phys. Chem. B 108, 18820 (2004).Google Scholar
Garcia, A., Welch, G.C., Ratcliff, E.L., Ginley, D.S., Bazan, G.C., and Olson, D.C.: Improvement of interfacial contacts for new small-molecule bulk-heterojunction organic photovoltaics. Adv. Mater. 54, 5368 (2012).Google Scholar
White, M.S., Olson, D.C., Shaheen, S.E., Kopidakis, N., and Ginley, D.S.: Inverted bulk-heterojunction organic photovoltaic device using a solution-derived ZnO underlayer. Appl. Phys. Lett. 89, 143517 (2006).Google Scholar
Po, R., Carbonera, C., Bernardi, A., and Camaioni, N.: The role of buffer layers in polymer solar cells. Energy Environ. Sci. 4(2), 285 (2011).Google Scholar
Greiner, M.T., Helander, M.G., Tang, W.M., Wang, Z.B., Qiu, J., and Lu, Z.H.: Universal energy-level alignment of molecules on metal oxides. Nat. Mater. 11, 76 (2012).Google Scholar
Ali, M., Abbas, M., Karim Shah, S., Tuerhong, R., Generosi, A., Paci, B., Hirsch, L., and Gunnella, R.: Realization of solution processed multi-layer bulk heterojunction organic solar cells by electro-spray deposition. Org. Electron. 13, 2130 (2012).Google Scholar
Paci, B., Spyropoulos, G.D., Generosi, A., Bailo, D., Rossi Albertini, V., Stratakis, E., and Kymakis, E.: Evidence for improved stability of bulk heterojunction plasmonic organic photovoltaics. Adv. Funct. Mater. 21, 3578 (2011).Google Scholar
Paci, B., Generosi, A., Bailo, D., Rossi Albertini, V., and De Bettignies, R.: Discriminating bulk, surface and interface aging effects in polymer-based active materials for efficient photovoltaic devices. Chem. Phys. Lett. 494, 69 (2010).Google Scholar
Paci, B., Generosi, A., Rossi Albertini, V., and De Bettignies, R.: The role of C60 barrier layer in improving the performances of efficient polymer-based photovoltaic devices: An AFM/EDXR time-resolved study. J. Phys. Chem. C 113, 19740 (2009).Google Scholar
Chirvase, D., Parisi, J., Hummelen, J.C., and Dyakonov, V.: Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15, 1317 (2004).CrossRefGoogle Scholar
Liu, F., Zhao, W., Tumbleston, J.R., Wang, C., Gu, Y., Wang, D., Briseno, A.L., Ade, H., and Russell, T.P.: Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 4, 1301377 (2014).Google Scholar
Zhou, N., Lin, H., Lou, S.J., Yu, X., Guo, P., Manley, E.F., Loser, S., Hartnett, P., Huang, H., Wasielewski, M.R., Chen, L.X., Chang, R.P.H., Facchetti, A., and Marks, T.J.: Morphology-performance relationships in high-efficiency all-polymer solar cells. Adv. Energy Mater. 4, 1300785 (2014).Google Scholar
Paci, B., Generosi, A., Rossi Albertini, V., Perfetti, P., De Bettignies, R., Firon, M., Leroy, J., and Sentein, C.: Controlling photoinduced degradation in plastic photovoltaic cells: A time resolved energy dispersive x-ray reflectometry study. Appl. Phys. Lett. 89, 043507 (2006).CrossRefGoogle Scholar
Paci, B., Generosi, A., Rossi Albertini, V., De Bettignies, R., and Sentein, C.: Time resolved morphological study of organic thin film solar cells based on calcium/aluminum cathode material. Chem. Phys. Lett. 461, 77 (2008).Google Scholar
Paci, B., Generosi, A., Rossi Albertini, V., Perfetti, P., De Bettignies, R., and Sentein, C.: Photo-degradation and stabilization effects in operating organic photovoltaic devices by joint photo-current and morphological monitoring. Sol. Energy Mater. Sol. Cells 92, 799 (2008).Google Scholar
Paci, B., Generosi, A., Rossi Albertini, V., Perfetti, P., De Bettignies, R., Firon, M., Leroy, J., and Sentein, C.: In situ energy dispersive X-ray reflectometry measurements on plastic solar cells upon working. Appl. Phys. Lett. 87, 194110 (2005).Google Scholar
Zhang, F., Zhuo, Z., Zhang, J., Wang, X., Xu, X., Wang, Z., Xin, Y., Wang, J., Wang, J., Tang, W., Xu, Z., and Wang, Y.: Influence of PC60BM ar PC70BM as electron acceptor on the performance of polymer solar cells. Sol. Energy Mater. Sol. Cells 97, 71 (2012).Google Scholar
Nicolaidis, N.C., Routley, B.S., Holdsworth, J.L., Belcher, W.J., Zhou, X., and Dastoor, P.C.: Fullerene contribution to photocurrent generation in organic photovoltaic cells. J. Phys. Chem. C 115, 7801 (2011).CrossRefGoogle Scholar
Paci, B., Generosi, A., Wright, J., Ferrero, C., Kakavelakis, G., Stratakis, E., and Kymakis, E.: Stability enhancement of organic photovoltaic devices utilizing partially reduced graphene oxide as the hole transport layer: Nanoscale insight into structural/interfaces properties and aging effects. RSC Adv. 5, 106930 (2015).Google Scholar
Paci, B., Generosi, A., Wright, J., Ferrero, C., Kakavelakis, G., Stratakis, E., and Kymakis, E.: Improving stability of organic devices: A time/space resolved structural monitoring approach applied to plasmonic photovoltaics. Sol. Energy Mater. Sol. Cells. 159, 617 (2017).Google Scholar
Susanna, G., Salamandra, L., Ciceroni, C., Mura, F., Brown, T.M., Reale, A., Rossi, M., Di Carlo, A., and Brunetti, F.: 8.7% power conversion efficiency polymer solar cell realized with non-chlorinated solvents. Sol. Energy Mater. Sol. Cells 134, 194 (2015).CrossRefGoogle Scholar
Rossi Albertini, V., Paci, B., and Generosi, A.: The energy dispersive X-ray reflectometry as a unique laboratory tool to investigate morphological properties of layered systems and devices. J. Phys. D: Appl. Phys. 39, 461 (2006).Google Scholar
Paci, B., Generosi, A., Generosi, R., Bailo, D., and Rossi Albertini, V.: Joint time-resolved AFM/EDXR techniques for thin films morphological in situ studies. Chem. Phys. Lett. 483, 159 (2009).CrossRefGoogle Scholar
Paci, B., Bailo, D., Rossi Albertini, V., Wright, J., Ferrero, C., Spyropoulos, G.D., Stratakis, E., and Kymakis, E.: Spatially-resolved in situ structural study of organic electronic devices with nanoscale resolution: The plasmonic photovoltaic case study. Adv. Mater. 25, 4760 (2013).Google Scholar
Zampetti, A., Fallahpour, A.H., Dianetti, M., Salamandra, L., Santoni, F., Gagliardi, A., Auf der Maur, M., Brunetti, F., Reale, A., Brown, T.M., and Di Carlo, A.: Influence of the interface material layers and semiconductor energetic disorder on the open circuit voltage in polymer solar cells. J. Polym. Sci., Part B: Polym. Phys. 53, 690 (2015).Google Scholar
Elshobaki, M., Anderegg, J., and Chaudhary, S.: Efficient polymer solar cells fabricated on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-etched old indium tin oxide substrates. ACS Appl. Mater. Interfaces 6, 12196 (2014).CrossRefGoogle Scholar
He, Z., Zhong, C., Huang, X., Wong, W-Y., Wu, H., Chen, L., Su, S., and Cao, Y.: Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv. Mater. 23, 4636 (2011).CrossRefGoogle ScholarPubMed
https://www.ossila.com/products/ptb7. “Ossila, enabling innovative electronics”, PTB7, date of access 29 November 2016.Google Scholar
Szarko, J.M., Rolczynski, B.S., Lou, S.J., Xu, T., Strzalka, J., Marks, T.J., Yu, L., and Chen, L.X.: Photovoltaic function and exciton/charge transfer dynamics in highly efficient semiconducting copolymer. Adv. Funct. Mater. 24, 10 (2014).CrossRefGoogle Scholar
Collins, B.A., Li, Z., Tumbleston, J.R., Gann, E., McNeill, C.R., and Ade, H.: The importance of fullerene percolation in the mixed regions of polymer–fullerene bulk heterojunction solar cells. Adv. Energy Mater. 1, 65 (2013).Google Scholar
Chen, W., Xu, T., He, F., Wang, W., Wang, C., Strzalka, J., Liu, Y., Wen, J., Miller, D.J., Chen, J., Hong, K., Yu, L., and Darling, S.B.: Hierarchical nanomorphologies promote exciton dissociation in polymer/fullerene bulk heterojunction solar cells. Nano Lett. 11, 3707 (2011).Google Scholar
Hammond, M.R., Kline, R.J., Herzing, A.A., Richter, L.J., Germack, D.S., Ro, H-W., Soles, C.L., Fischer, D.A., Xu, T., Yu, L., Toney, M.F., and DeLongchamp, D.M.: Molecular order in high-efficiency polymer/fullerene bulk heterojunction solar cells. ACS Nano 5, 8248 (2011).Google Scholar
Rivnay, J., Mannsfeld, S.C.B., Miller, C.E., Salleo, A., and Toney, M.F.: Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev. 112, 5488 (2012).Google Scholar
An, Q., Zhang, F., Zhang, J., Tang, W., Denga, Z., and Hu, B.: Versatile ternary organic solar cells: A critical review. Energy Environ. Sci. 9, 281 (2016).Google Scholar
Zhang, X., Li, W., Yao, J.n., and Zhan, C.: High-efficiency nonfullerene polymer solar cell enabling by integration of film-morphology optimization, donor selection, and interfacial engineering. ACS Appl. Mater. Interfaces 8, 15415 (2016).Google Scholar
Zhong, Y., Tuan Trinh, M., Chen, R., Purdum, G.E., Khlyabich, P.P., Sezen, M., Oh, S., Zhu, H., Fowler, B., Zhang, B., Wang, W., Nam, C-Y., Sfeir, M.Y., Black, C.T., Steigerwald, M.L., Loo, Y-L., Ng, F., Zhu, X-Y., and Nuckolls, C.: Molecular helices as electron acceptors in high-performance bulk heterojunction solar cells. Nat. Commun. 6, 8242 (2015).Google Scholar
DeLongchamp, D.M., Vogel, B.M., Jung, Y., Gurau, M.C., Richter, C.A., Kirillov, O.A., Obrzut, J., Fischer, D.A., Sambasivan, S., Richter, L.J., and Lin, E.K.: Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem. Mater. 17, 5610 (2005).CrossRefGoogle Scholar
Lu, L. and Yu, L.: Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it. Adv. Mater. 26, 4413 (2014).CrossRefGoogle ScholarPubMed
Sirringhaus, H., Brown, P.J., Friend, R.H., Nielsen, M.M., Bechgaard, K., Langeveld-Voss, B.M.W., Spiering, A.J.H., Janssen, R.A.J., Meijer, E.W., Herwig, P., and de Leeuw, D.M.: Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685 (1999).Google Scholar
Potscavage, W.J. Jr., Sharma, A., and Kippelen, B.: Critical interfaces in organic solar cells and their influence on the open-circuit voltage. Acc. Chem. Res. 42, 1758 (2009).Google Scholar
Steim, R., Kogler, F.R., and Brabec, C.J.: Interface materials for organic solar cells. J. Mater. Chem. 20, 2499 (2010).Google Scholar
Liu, Z., Li, J., and Yan, F.: Package-free flexible organic solar cells with graphene top electrodes. Adv. Mater. 25, 4296 (2013).Google Scholar
Wang, D.H., Kim, J.K., Seo, J.H., Park, I., Hong, B.H., Park, J.H., and Heeger, A.J.: Transferable graphene oxide by stamping anotechnology: Electron-transport layer for efficient bluk heterojunction solar cells. Angew. Chem., Int. Ed. 52, 2874 (2013).CrossRefGoogle Scholar
Krebs, F.C. and Norrman, K.: Analysis of the failure mechanism for a stable organic photovoltaic during 10000 h of testing. Prog. Photovoltaics Res. Appl. 15, 697 (2007).Google Scholar
Solé, V.A., Papillon, E., Cotte, M., Walter, Ph., and Susini, J.: A multiplatform code for the analysis of energy-dispersive x-ray fluorescence spectra. Spectrochim. Acta, Part B 62, 63 (2007).CrossRefGoogle Scholar
Norrman, K., Gevorgyan, S.A., and Krebs, F.C.. Water-induced degradation of polymer solar cells studied by H2 18O labeling. ACS Appl. Mater. Interfaces 1, 102 (2008).Google Scholar
Poh, H.L., Sanek, F., Ambrosi, A., Zhao, G., Sofer, Z., and Pumera, M.: Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties. Nanoscale 4, 3515 (2012).CrossRefGoogle ScholarPubMed
Lloyd, M.T., Olson, D.C., Lu, P., Fang, E., Moore, D.L., White, M.S., Reese, M.O., Ginley, D.S., and Hsua, J.W.P.: Impact of contact evolution on the shelf life of organic solar cells. J. Mater. Chem. 19, 7638 (2009).Google Scholar