Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-20T06:25:12.269Z Has data issue: false hasContentIssue false

In situ scanning electron microscopy study of eutectic SnPb and pure Sn wetting on Au/Cu/Cr multilayered thin films

Published online by Cambridge University Press:  31 January 2011

D. W. Zheng
Affiliation:
Department of Materials Science and Engineering, UCLA, Los Angeles, California 90095-1595
Weijia Wen
Affiliation:
Department of Materials Science and Engineering, UCLA, Los Angeles, California 90095-1595
K. N. Tu
Affiliation:
Department of Materials Science and Engineering, UCLA, Los Angeles, California 90095-1595
P. A. Totta
Affiliation:
IBM East Fishkill Facility, Hopewell Junction, New York 12533
Get access

Abstract

Wetting behavior of eutectic SnPb and pure Sn on Au(500 Å)/Cu(1 μm)/Cr(800 Å) layered thin films were monitored in situ in a ramping temperature profile using a scanning electron microscope (SEM) with a vacuum of 10−5–10−6 Torr. We found that the wetting behavior of these two solders in SEM was dramatically different from their behavior in RMA soldering flux; a smaller wetting angle and rough wetting front morphology were observed. Very surprisingly, no dewetting could be observed inside the SEM chamber, yet dewetting happened to the same sample when it was removed from the SEM and immersed in RMA soldering flux. We estimate the interfacial energy between liquid Sn and solid Cr and assume the reduction of surface and interfacial energies caused by possible oxidation of Cr and liquid Sn surface in the SEM in order to explain the above-mentioned wetting and dewetting behaviors.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.De Gennes, P. G., Europhys. Lett. 39 (4), 407 (1997).CrossRefGoogle Scholar
2.Landry, K., Rado, C., Voitovich, R., and Eustathopoulos, N., Acta Mater. 45 (7), 3079 (1997).CrossRefGoogle Scholar
3.Reynolds, H.L. and Morris, J. W. Jr, J. Electron. Mater. 24, 1429 (1995).CrossRefGoogle Scholar
4.Boettinger, W.J., Hardwerker, C. A., and Rattua, U. R., in The Mechanics of Solder Alloy Wetting and Spreading, edited by Yost, F. G., Hosking, F. M., and Frear, D. R. (Van Nostrand Reinhold, New York, 1993), Chap. 4, pp. 103140.CrossRefGoogle Scholar
5.Yost, F.G. and Romig, A.D., in Electronic Packaging Materials Science III, edited by Jaccodine, R., Jackson, K. A., and Sundahl, R. C. (Mater. Res. Soc. Symp. Proc. 108, Pittsburgh, PA, 1988), p. 385.Google Scholar
6.Liu, A.A., Kim, H. K., Tu, K. N., and Totta, P. A., J. Appl. Phys. 80 (5), 2774 (1996).CrossRefGoogle Scholar
7.Zheng, D.W., Wen, W., and Tu, K.N., Phys. Rev. E 57 (5), 3719R (1998).CrossRefGoogle Scholar
8.Zheng, D.W., Jia, Z. Y., Liu, C. Y., Wen, Weijia, and Tu, K. N., J. Mater. Res. 13, 1103 (1998).CrossRefGoogle Scholar
9.Landry, K. and Eustathopoulos, N., Acta Mater. 44 (10), 3923 (1996).CrossRefGoogle Scholar
10.Drevet, B., Kalogeropoulous, S., and Eustathopoulos, N., Acta Mater. 41, 3119 (1993).CrossRefGoogle Scholar
11.Liu, C.Y. and Tu, K.N., Appl. Phys. Lett. 69, 4014 (1996).CrossRefGoogle Scholar
12.Somorjai, G.A., Chemistry in Two Dimensions (Cornell, Ithaca, NY, 1981), p. 31.Google Scholar
13.Tu, K.N., Mayer, J. W., and Feldman, L. C., Electronic Thin Film Science for Electrical Engineers and Materials Scientists (Macmillan Publishing Company, New York, 1992), p. 26.Google Scholar
14.Hoflund, G.B. and Corallo, G.R., Phys. Rev. B 46 (11), 7110 (1992).CrossRefGoogle Scholar
15.De Padova, P., Fanfoni, M., Larciprete, R., Mangiantini, M., Poiori, S., and Perfetti, P., Surf. Sci. 313, 379 (1994).CrossRefGoogle Scholar
16.SMay, G.L., J. Am. Ceram. Soc. 71, C217 (1988).CrossRefGoogle Scholar
17.Mackay, C.A., in The Mechanics of Solder Alloy Wetting & Spreading, edited by Yost, F. G., Hosking, F. M., and Frear, D. R. (Van Nostrand Reinhold, New York, 1993), p. 58.Google Scholar
18.Hondros, E.D. and McLean, D., in Surface Phenomena of Metals (Society of Chemical Industry, London, 1968), p. 48.Google Scholar
19.Howie, F.H. and Hondros, E. D., J. Mater. Sci. 17, 1434 (1982).CrossRefGoogle Scholar
20.White, D.W.G, Metall. Trans. 2, 3067 (1971).CrossRefGoogle Scholar
21.Wassink, R.J. K., J. Inst. Met. 95, 38 (1967).Google Scholar
22.CRC Handbook of Chemistry and Physics, 74th ed., edited by Lide, D.R. (CRC Press, Boca Raton, FL, 1994), p. 12–10.Google Scholar
23.Binary Alloy Phase Diagrams, edited by Massalski, T.B., Okamoto, H., Subramanian, P.R., and Kacprzak, L. (ASM INTERNATIONAL, Materials Park, OH, 1990).Google Scholar
24.Rasmussen, J. J., J. Am. Ceram. Soc. 55 (6), 326 (1972).CrossRefGoogle Scholar