Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T07:20:29.190Z Has data issue: false hasContentIssue false

In situ scanning electron microscopy indentation studies on multilayer nitride films: Methodology and deformation mechanisms

Published online by Cambridge University Press:  31 January 2011

K.A. Rzepiejewska-Malyska*
Affiliation:
EMPA, Materials Science and Technology—Laboratory for Mechanics of Materials and Nanostructures, Thun CH-3602, Switzerland
W.M. Mook
Affiliation:
EMPA, Materials Science and Technology—Laboratory for Mechanics of Materials and Nanostructures, Thun CH-3602, Switzerland
M. Parlinska-Wojtan
Affiliation:
EMPA, Materials Science and Technology—Laboratory for Mechanics of Materials and Nanostructures, Thun, BE Switzerland
J. Hejduk
Affiliation:
Polish Academy of Sciences—Institute of Electron Technology, Warsaw, Poland
J. Michler
Affiliation:
EMPA, Materials Science and Technology—Laboratory for Mechanics of Materials and Nanostructures, Thun, BE Switzerland
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Systematic studies of the deformation mechanisms of multilayer transition metal nitride coatings TiN/CrN, TiN/NbN, and NbN/CrN, and corresponding reference coatings of TiN, NbN, and CrN deposited by a direct current (dc) magnetron sputtering process onto silicon 〈100〉 have been performed. Mechanical characterization was conducted using a combination of microindentation and nanoindentation in the load range 30 to 150 mN and 0.5 to 3.5 mN, respectively. For both load ranges, scanning electron microscopy (SEM) in situ indentation was used to observe the indentation process including any pileup, sink-in, and fracture mechanisms specific to each coating. The coatings’ microstructure, both before and after indentation, was analyzed using transmission electron microscopy (TEM). It was possible to both correlate the indentation load–displacement response to surface roughness effects and fracture modes (substrate and film cracking) and observe deformation mechanisms within the coatings.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mayrhofer, P.H., Mitterer, Ch., and Hultman, L.: Microstructural design of hard coatings. Prog. Mater. Sci. 51, 1032 (2006).CrossRefGoogle Scholar
2.Tjong, S.C. and Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng. 45, 1 (2004).CrossRefGoogle Scholar
3.Sproul, W.D.: New routes in preparation of mechanically hard films. Science 273, 889 (1996).CrossRefGoogle ScholarPubMed
4.Petrov, I., Hultman, L., Helmersson, U., Sundgren, J.E., and Green, J.E.: Microstructure modification of TiN by ion bombardment during reactive sputter deposition. Thin Solid Films 169, 299 (1989).CrossRefGoogle Scholar
5.Sproul, W.D., Rudnik, P.J., and Graham, M.E.: The effect of N2 partial pressure, deposition rate and substrate bias potential on the hardness and texture of reactively sputtered TiN coatings. Surf. Coat. Technol. 39–10, 355 (1989).CrossRefGoogle Scholar
6.Arias, D.F., Arango, Y.C., and Devia, A.: Study of TiN and ZrN thin films grown by cathodic arc technique. Appl. Surf. Sci. 253, 1683 (2006).CrossRefGoogle Scholar
7.Yang, Q., Seo, D.Y., and Zhao, L.R.: Multilayered coatings with alternate pure Ti and TiNyCrN superlattice. Surf. Coat. Technol. 177–178, 204 (2004).CrossRefGoogle Scholar
8.Mirkarimi, B., Barnett, S.A., Hubbard, K.M., Jervis, T.R., and Hultman, L.: Structure and mechanical properties of epitaxial TiN/V0.3Nb0.7N (100) superlattices. J. Mater. Res. 9, 1456 (1994).CrossRefGoogle Scholar
9.Mendibide, C., Fontaine, J., Steyer, P., and Esnouf, C.: Dry sliding wear model of nanometer scale multilayered TiN/CrN PVD hard coatings. Tribol. Lett. 17, 779 (2004).CrossRefGoogle Scholar
10.Zhang, W.H. and Hsieh, J.H.: Tribological behavior of TiN and CrN coatings sliding against an epoxy molding compound. Surf. Coat. Technol. 130, 240 (2000).CrossRefGoogle Scholar
11.Oden, M., Ericsson, C., Hakansson, G., and Ljungcrantz, H.: Micro-structure and mechanical behavior of arc-evaporated Cr-N coatings. Surf. Coat. Technol. 114, 39 (1999).CrossRefGoogle Scholar
12.Fontalvo, G.A., Terziyska, V., and Mitterer, C.: High-temperature tribological behaviour of sputtered NbNx thin films. Surf. Coat. Technol. 202, 1017 (2002).CrossRefGoogle Scholar
13.Sandu, C.S., Benkahoul, M., Parlinska-Wojtan, M., Sanjinés, R., and Levy, R.: Morphological, structural and mechanical properties of NbN thin films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 200, 6544 (2006).CrossRefGoogle Scholar
14.Han, Z., Hu, X., Tian, J., Li, G., and Mingyuan, G.: Magnetron sputtered NbN thin films and mechanical properties. Surf. Coat. Technol. 179, 188 (2004).CrossRefGoogle Scholar
15.Su, Y.L. and Lin, J.S.: An investigation of the tribological potential of TiN, CrN and TiN + CrN physical vapor deposited coatings in machine element applications. Wear 170, 45 (1993).CrossRefGoogle Scholar
16.Zhang, Z.G., Rapaud, O., Bonasso, N., Mercs, D., Dong, C., and Coddet, C.: Control of microstructures and properties of dc magnetron sputtering deposited chromium nitride films. Vacuum 82, 501 (2008).CrossRefGoogle Scholar
17.Milosev, I., Abels, J.M., Strehblow, H-H., Naviasek, B., and Metikos-Hukovic, M.: High temperature oxidation of thin CrN coatings deposited on steel. J. Vac. Sci. Technol. A 14, 2527 (1996).CrossRefGoogle Scholar
18.Hurkmans, T., Lewis, D.B., Brooks, J.S., and Munz, W-D.: Chromium nitride coatings grown by unbalanced magnetron (UBM) and combined arc/unbalanced magnetron (ABS TM) deposition techniques. Surf. Coat. Technol. 86, 192 (1996).CrossRefGoogle Scholar
19.Hubler, R., Cozza, A., Marcondes, T.L., Souza, R.B., and Fiori, F.F.: Wear and corrosion protection of 316-L femoral implants by deposition of thin films. Surf. Coat. Technol. 142, 1078 (2001).CrossRefGoogle Scholar
20.Panjan, P., Navinsek, B., Cvelbar, A., Zalar, A., and Milosev, I.: Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN, and TiN/CrN multilayer hard coatings reactively sputtered as a low temperature. Thin Solid Films 281, 298 (1996).CrossRefGoogle Scholar
21.Kanamori, S.: Investigation of reactively sputtered TiN films for diffusion barriers. Thin Solid Films 136, 195 (1986).CrossRefGoogle Scholar
22.Hinode, K., Homma, Y., Horiuchi, M., and Takahashi, T.: Morphology-dependent oxidation behavior of reactively sputtered titanium-nitride films. J. Vac. Sci. Technol. A 15, 2017 (1997).CrossRefGoogle Scholar
23.Deen, M.J.: Effect of the deposition rate on the properties of d.c-magnetron-sputtered niobium nitride thin films. Thin Solid Films 152, 535 (1987).CrossRefGoogle Scholar
24.Dawson-Elli, D.F., David, F., Fung, C.A., and Nordman, J.E.: DC reactive magnetron sputtered NbN thin films prepared with and without hollow cathode enhancement. IEEE Trans. Magn. 27, 1592 (1991).CrossRefGoogle Scholar
25.Singer, I.L., Bolster, R.N., Wolf, S.A., Skelton, E.F., and Jeffries, R.A.: Abrasion resistance, microhardness and microstructures of single-phase niobium nitride films. Thin Solid Films 107, 207 (1983).CrossRefGoogle Scholar
26.Gotoh, Y., Nagao, M., Ura, T., Tsuji, H., and Ishikawa, J.: Ion-beam-assisted deposition of niobium nitride thin films for vacuum microelectronic devices. Nucl. Instrum. Methods Phys. Res. B 148, 925 (1999).CrossRefGoogle Scholar
27.Havey, K.S., Zabinski, J.S., and Walck, S.D.: The chemistry, structure, and resulting wear properties of magnetron-sputtered NbN thin films. Thin Solid Films 303, 238 (1997).CrossRefGoogle Scholar
28.Mumtaz, A. and Class, W.H.: Color of titanium nitride prepared by reactive dc magnetron sputtering. J. Vac. Sci. Technol. 20, 345 (1981).CrossRefGoogle Scholar
29.Daniels, B.J., Nix, W.D., and Clemens, B.M.: Enhanced mechanical hardness in compositionally modulated Fe(001)/Pt(001) and Fe(001)/Cr(001) epitaxial thin films. Thin Solid Films 253, 218 (1994).CrossRefGoogle Scholar
30.Nordin, M., Larsson, M., and Hogmark, S.: Mechanical and tribo-logical properties of multilayered PVD TiN/CrN,TiN/MoN, TiN/ NbN and TiN/TaN coatings on cemented carbide. Surf. Coat. Technol. 106, 234 (1998).CrossRefGoogle Scholar
31.Molina-Aldareguia, J.M., Lloyd, S.J., Oden, S.J., Joelsson, T., Hultman, L., and Clegg, W.J.: Deformation structures under indentations in TiN/NbN single-crystal multilayers deposited by magnetron sputtering at different bombarding ion energies. Philos. Mag. A 82, 1983 (2002).CrossRefGoogle Scholar
32.Lee, S.Y., Kim, G.S., and Hahn, J.H.: Effect of the Cr content on the mechanical properties of nanostructured TiN/CrN coatings. Surf. Coat. Technol. 177, 426 (2004).CrossRefGoogle Scholar
33.Barshilia, H.C. and Rajam, K.S.: Structure and properties of reactive DC magnetron sputtered TiN/NbN hard superlattices. Surf. Coat. Technol. 183, 174 (2004).CrossRefGoogle Scholar
34.Kang, B.C., Kim, H.Y., Kwon, O.Y., and Hong, S.H.: Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scr. Mater. 57, 703 (2007).CrossRefGoogle Scholar
35.Verdier, M., Huang, H., Spaepen, F., Embury, J.D., and Kung, H.: Microstructure, indentation and work hardening of Cu/Ag multilayers. Philos. Mag. 86, 5009 (2006).CrossRefGoogle Scholar
36.Luo, Y-M., Pan, W., Li, S.Q., Chen, J., Wang, R.G., and Li, J.Q.: Mechanical properties and microstructure of a Si3N4/Ti3SiC2 multilayer composite. Ceram. Int. 28, 223 (2002).Google Scholar
37.Vdovin, V.I.: Misfit dislocations in epitaxial heterostructures: Mechanisms of generation and multiplication. Phys. Status Solidi A 171, 239 (1999).3.0.CO;2-M>CrossRefGoogle Scholar
38.Ding, J., Meng, Y., and Wen, S.: Mechanical properties and fracture toughness of multilayer hard coatings using nanoindentation. Thin Solid Films 371, 178 (2000).CrossRefGoogle Scholar
39.Carvalho, N.J.M. and De Hosson, J.Th.M.: Deformation mechanisms in TiN/(Ti,Al)N multilayers under depth-sensing indentation. Acta Mater. 54, 1857 (2006).CrossRefGoogle Scholar
40.Chu, X. and Barnett, S.A.: Model of superlattice yield stress and hardness enhancements. J. Appl. Phys. 77, 4403 (1994).CrossRefGoogle Scholar
41.Long, Y., Giuliani, F., Lloyd, S.J., Molina-Aldareguia, J., Barber, Z.H., and Clegg, W.J.: Deformation processes and the effects of microstructure in multilayered ceramics. Composites: Part B 37, 542 (2006).CrossRefGoogle Scholar
42.Musil, J., Kunc, F., Zeman, H., and Polakova, H.: Relationships between hardness, Young's modulus and elastic recovery in hard nanocomposite coatings. Surf. Coat. Technol. 154, 304 (2002).CrossRefGoogle Scholar
43.Wrzesinska, H., Grabiec, P., Rymuza, Z., and Misiak, M.: Influence of substrate on mechanical properties of TiN/NbN superlattices. Microelectron. Eng. 61, 1009 (2002).CrossRefGoogle Scholar
44.Su, Y.L. and Yao, S.H.: On the performance and application of CrN coating. Wear 205, 112 (1997).CrossRefGoogle Scholar
45.Okumiya, M. and Griepentrog, M.: Mechanical properties and tribological behavior of TiN-CrAlN and CrN-CrAlN multilayer coatings. Surf. Coat. Technol. 112, 123 (1999).CrossRefGoogle Scholar
46.Borrero-Lopez, O., Hoffman, M., Bendavid, A., and Martin, P.J.: A simple nanoindentation-based methodology to assess the strength of brittle thin films. Acta Mater. 56, 1633 (2008).CrossRefGoogle Scholar
47.Moser, B., Löffler, J.F., and Michler, J.: Discrete deformation in amorphous metals: An in situ SEM indentation study. Philos. Mag. 86, 5715 (2006).CrossRefGoogle Scholar
48.Rabe, R., Breguet, J-M., Schwaller, P., Stauss, S., Haug, F-J., Patscheider, J., and Michler, J.: Observation of fracture and plastic deformation during indentation and scratching inside the scanning electron microscope. Thin Solid Films 469, 206 (2004).CrossRefGoogle Scholar
49.Rzepiejewska-Malyska, K.A., Parlinska-Wojtan, M., Wasmer, K., Hejduk, K., and Michler, J.: In situ SEM indentation studies of the deformation mechanisms in TiN, CrN and TiN/CrN. Micron. 40, 22 (2009).CrossRefGoogle ScholarPubMed
50.Wrzesinska, H., Ratajczak, J., Studzinska, K., and Katcki, J.: Transmission electron microscopy of hard ceramic superlattices applied in silicon micro-electro-mechanical systems. Mater. Chem. Phys. 81, 265 (2003).CrossRefGoogle Scholar
51.Zhou, Y., Asaki, R., Soe, W-H., Yamamoto, R., and Chen, R.: Hardness anomaly, plastic deformation work and fretting wear properties of polycrystalline TiN/CrN multilayers. Wear 236, 159 (1999).CrossRefGoogle Scholar
52.Tuck, J.R., Korsunsky, A.M., Bhat, D.G., and Bull, S.J.: Indentation hardness evaluation of cathodic arc deposited thin hard coatings. Surf. Coat. Technol. 139, 63 (2001).CrossRefGoogle Scholar
53.Veprek, S.: The search for novel, superhard materials. J. Vac. Sci. Technol. A 17, 2401 (1999).CrossRefGoogle Scholar
54.Hollek, H.: Binary and Ternary Carbide and Nitride Systems of Transition Metals (Gebrüder Borntraeger, Berlin, 1984).Google Scholar
55.Rzepiejewska-Malyska, K.A., Major, R.C., Buerki, G., Cyrankowski, E., Asif, S., Warren, O., and Michler, J.: In situ mechanical observations during nanoindentation inside a high resolution scanning electron microscope. J. Mater. Res. 23, 1973 (2008).CrossRefGoogle Scholar
56.Naviasek, B., Panjan, P., and Cvelbar, A.: Characterization of low temperature CrN and TiN (PVD) hard coatings. Surf. Coat. Technol. 74, 155 (1995).CrossRefGoogle Scholar
57.Hollstein, F., Wiedemann, R., and Scholz, J.: Characteristics of PVD-coatings on AZ31hp magnesium alloys. Surf. Coat. Tech-nol. 162, 261 (2003).CrossRefGoogle Scholar
58.Krysicki, W., Bartos, J., Dyczka, W., Królikowska, K., and Wasilewski, M.: The Theory of Probability and Mathematical Statistics in Exercises. Mathematical Statistics, Part 2 (Wydawnictwo Naukowe PWN, 2006).Google Scholar
59.Poulek, V., Musil, J., Cerny, R., and Kuzel, R.: ε-Ti2N phase growth control in titanium nitride films. Thin Solid Films 170, L55 (1989).CrossRefGoogle Scholar
60.LeClair, P.R.: Titanium nitride thin films by the electron shower process. Ph.D. Thesis. Massachusetts Institute of Technology, Boston, MA (1998).Google Scholar
61. Yu.Levinskiy, V.: Phase diagrams of metals with gases. Russ. Metall. 34, (1974).Google Scholar
62.Lengauer, W., Bohn, M., Wollein, B., and Lisak, K.: Phase reactions in the Nb-N system below 1400 C. Acta Mater. 48, 2633 (2000).CrossRefGoogle Scholar
63.Oden, M., Almer, U.J., Hakansson, G., and Olsson, M.: Microstructure property relationships in arc-evaporated Cr–N coatings. Thin Solid Films 377, 407 (2000).CrossRefGoogle Scholar
64.Rebholz, C., Ziegele, H., Leyland, A., and Matthews, A.: Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering. Surf. Coat. Technol. 115, 222 (1999).CrossRefGoogle Scholar
65.Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
66.Bull, S.J.: Using work of indentation to predict erosion behavior in bulk materials and coatings. J. Phys. D: Appl. Phys. 39, 1626 (2006).CrossRefGoogle Scholar
67.Minor, A.M., Stach, E.A., Morris, J.W., and Petrov, I.: In situ nanoindentation of epitaxial TiN/MgO (001) in a transmission electron microscope. J. Electron. Mater. 32, 1023 (2003).CrossRefGoogle Scholar