Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T05:05:37.820Z Has data issue: false hasContentIssue false

In situ observation of the spatial distribution of crystalline phases during pressure-induced transformations of indented silicon thin films

Published online by Cambridge University Press:  11 November 2014

Yvonne B. Gerbig*
Affiliation:
Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
Chris A. Michaels
Affiliation:
Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
Robert F. Cook
Affiliation:
Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Indentation-induced phase transformation processes were studied by in situ Raman imaging of the deformed contact region of silicon thin films, using a Raman spectroscopy-enhanced instrumented indentation technique (IIT). In situ Raman imaging was used to study the generation and evolution of the phase transformation of silicon while performing an IIT experiment analyzed to determine the average contact pressure and indentation strain. This is, to our knowledge, the first sequence of Raman images documenting the evolution of the strain fields and changes in the phase distributions of a material while conducting an indentation experiment. The reported in situ experiments provide insights into the transformation processes in silicon during indentation, confirming, and providing the experimental evidence for, some of the previous assumptions made on this subject. The developed Raman spectroscopy-enhanced IIT has shown its potential in advancing the understanding of deformation mechanisms and will provide a very useful tool in validating and refining contact models and related simulation studies.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mujica, A., Rubio, A., Munoz, A., and Needs, R.J.: High-pressure phases of group-IV, III-V, and II-VI compounds. Rev. Mod. Phys. 75, 863 (2003).CrossRefGoogle Scholar
Gupta, M.C. and Ruoff, A.L.: Static compression of silicon in the [100] and in the [111] directions. J. Appl. Phys. 51, 1072 (1980).CrossRefGoogle Scholar
Jamieson, J.C.: Crystal structures at high pressures of metallic modifications of silicon and germanium. Science 139, 762 (1963).CrossRefGoogle ScholarPubMed
Hu, J.Z., Merkle, L.D., Menoni, C.S., and Spain, I.L.: Crystal data for high-pressure phases of silicon. Phys. Rev. B 34, 4679 (1986).CrossRefGoogle ScholarPubMed
Crain, J., Ackland, G.J., Mclean, J.R., Piltz, R.O., Hatton, P.D., and Pawley, G.S.: Reversible pressure-induced structural transitions between metastable phases of silicon. Phys. Rev. B 50, 13043 (1994).CrossRefGoogle ScholarPubMed
Clarke, D.R., Kroll, M.C., Kirchner, P.D., Cook, R.F., and Hockey, B.J.: Amorphization and conductivity of silicon and germanium induced by indentation. Phys. Rev. Lett. 60, 2156 (1988).CrossRefGoogle ScholarPubMed
Pharr, G.M., Oliver, W.C., and Harding, D.S.: New evidence for a pressure-induced phase transformation during the indentation of silicon. J. Electron. Mater. 19, 881 (1990).CrossRefGoogle Scholar
Gridneva, I.V., Milman, Y.V., and Trefilov, V.I.: Phase transition in diamond-structure crystals during hardness measurements. Phys. Status Solidi 14, 177 (1972).CrossRefGoogle Scholar
Pharr, G.M., Oliver, W.C., Cook, R.F., Kirchner, P.D., Kroll, M.C., Dinger, T.R., and Clarke, D.R.: Electrical resistance of metallic contacts on silicon and germanium during indentation. J. Mater. Res. 7, 961 (1992).CrossRefGoogle Scholar
Weppelmann, E.R., Field, J.S., and Swain, M.V.: Observation, analysis, and simulation of the hysteresis of silicon using ultra-micro-indentation with spherical indenters. J. Mater. Res. 8, 830 (1993).CrossRefGoogle Scholar
Bradby, J.E., Willaims, J.S., Wong-Leung, J., Swain, M.V., and Munroe, P.: Mechanical deformation in silicon by micro-indentation. J. Matter. Res. 16(5), 1500 (2001).CrossRefGoogle Scholar
Juliano, T., Domnich, V., and Gogotsi, Y.: Examining pressure-induced phase transformations in silicon by spherical indentation and Raman spectroscopy: A statistical study. J. Mater. Res. 19, 3099 (2004).CrossRefGoogle Scholar
Saka, H., Shimantani, A., Suganuma, M., and Suprijadi, : Transmission electron microscopy of amorphization and phase transformation beneath indents in Si. Philos. Mag. A 82, 1971 (2002).CrossRefGoogle Scholar
Ge, D., Minor, A.M., Stach, E.A., and Morris, J.W. Jr.: Size effects in the nanoindentation of silicon at ambient temperature. Philos. Mag. 86, 4069 (2006).CrossRefGoogle Scholar
Domnich, V. and Gogotsi, Y.: Phase transformations in silicon under contact loading. Rev. Adv. Mater. Sci. 3, 1 (2002).Google Scholar
Mylvaganam, K., Zhang, L.C., Eyben, P., Mody, J., and Vandervorst, W.: Evolution of metastable phases in silicon during nanoindentation: Mechanism analysis and experimental verification. Nanotechnology 20, 305705 (2009).CrossRefGoogle ScholarPubMed
Ho, S-T., Chang, Y-H., and Lin, H-N.: Conducting atomic force microscopy of phase transformation in silicon nanoindentation. J. Appl. Phys. 96, 3562 (2004).CrossRefGoogle Scholar
Kailer, A., Gogotsi, Y.G., and Nickel, K.G.: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057 (1997).CrossRefGoogle Scholar
Jang, J., Lance, M.J., Wen, D., Tsui, T.Y., and Pharr, G.M.: Indentation-induced phase transformations in silicon: Influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53, 1759 (2005).CrossRefGoogle Scholar
Ge, D., Domnich, V., and Gogotsi, Y.: High-resolution transmission electron microscopy study of metastable silicon phases produced by nanoindentation. J. Appl. Phys. 93, 2418 (2003).CrossRefGoogle Scholar
Zarudi, I., Zhang, L.C., Zou, J., and Vodenitcharova, T.: The R8-BC8 phases and crystal growth in monocrystalline silicon under microindentation with a spherical indenter. J. Mater. Res. 19, 332 (2004).CrossRefGoogle Scholar
Haq, A. and Munroe, P.R.: Phase transformations in (111) Si after spherical indentation. J. Mater. Res. 24, 1967 (2009).CrossRefGoogle Scholar
Gerbig, Y.B., Stranick, S.J., and Cook, R.F.: Direct observation of phase transformation anisotropy in indented silicon studied by confocal Raman spectroscopy. Phys. Rev. B 83, 205209 (2001).CrossRefGoogle Scholar
Das, C.R., Hsu, H.C., Dhara, S., Bhaduri, A.K., Raj, B., Chen, L.C., Chen, K.H., Albert, S.K., Ray, A., and Tzeng, Y.: A complete Raman mapping of phase transitions in Si under indentation. J. Raman Spectrosc. 41, 334 (2010).CrossRefGoogle Scholar
Demangeot, F., Puech, P., Paillard, V., Domnich, V., and Gogotsi, Y.G.: Spatial distribution of strain and phases in Si nano-indentation analysed by Raman mapping. Solid State Phenom. 8284, 777 (2002).Google Scholar
Puech, P., Demangeot, F., Pizani, P.S., Domnich, V., and Gogotsi, Y.: Is there a link between very high strain and metastable phases in semiconductors: Cases of Si and GaAs? J. Phys.: Condens. Matter 16, S39 (2004).Google Scholar
Eyben, P., Clemente, F., Vanstreels, K., Purtois, G., Clarysse, T., Sankaran, K., Mody, J., Vandervorst, W., Mylvaganam, K., and Zhang, L.: Analysis and modeling of the high vacuum scanning spreading resistance microscopy nanocontact on silicon. J. Vac. Sci. Technol., B 28, 401 (2010).CrossRefGoogle Scholar
Bradby, J.E., Williams, J.S., and Swain, M.V.: In situ electrical characterization of phase transformations in Si during indentation. Phys. Rev. B 67, 085205 (2003).CrossRefGoogle Scholar
Mann, A.B., Van Heerden, D., Pethica, J.B., Bowes, P., and Weihs, T.P.: Contact resistance and phase transformations during nanoindentation of silicon. Philos. Mag. A 82, 1921 (2002).CrossRefGoogle Scholar
Malone, B.D., Sau, J.D., and Cohen, M.L.: Ab initio survey of the electronic structure of tetrahedrally bonded phases of silicon. Phys. Rev. B 78, 035210 (2008).CrossRefGoogle Scholar
Ruffell, S., Bradby, J.E., Williams, J.S., and Munroe, P.: Formation and growth of nanoindentation-induced high pressure phases in crystalline and amorphous silicon. J. Appl. Phys. 102, 063521 (2007).CrossRefGoogle Scholar
Gerbig, Y.B., Michaels, C.A., Forster, A.M., Hettenhouser, J.W., Byrd, W.E., Morris, D.J., and Cook, R.F.: Indentation device for in situ Raman spectroscopic and optical studies. Rev. Sci. Instrum. 83, 125106 (2012).CrossRefGoogle ScholarPubMed
Gerbig, Y.B., Michaels, C.A., Forster, A.M., and Cook, R.F.: In situ observation of the indentation-induced phase transformation of silicon thin films. Phys. Rev. B 85, 104102 (2012).CrossRefGoogle Scholar
Any mention of commercial products within this paper is for information only; it does not imply recommendation or endorsement by NIST.Google Scholar
Bushby, A.J. and Jennet, N.M.: Determining the area function of spherical indenters for nanoindentation. In Fundamentals of Nanoindentation & Nanotribology II, Baker, S.P., Cook, R.F., Corcoran, S.G., and Moody, N.R. ed.; Mat. Res. Soc. Symp. Proc., Vol. 649, Warrendale, PA, 2001, p. Q7.17.1.Google Scholar
Field, J.S. and Swain, M.V.: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
Gerbig, Y.B., Stranick, S.J., Morris, D.J., Vaudin, M.D., and Cook, R.F.: Effect of crystallographic orientation on phase transformations during indentation of silicon. J. Mater. Res. 24, 1172 (2009).CrossRefGoogle Scholar
Weinstein, B.A. and Piermarini, G.J.: Raman scattering and phonon dispersion in Si and GaP at very high pressure. Phys. Rev. B 12, 1172 (1972).CrossRefGoogle Scholar
Windl, W., Pavone, P., Karch, K., Schütt, O., Strauch, D., Giannozzi, P., and Baroni, S.: Second-order Raman spectra of diamond from ab initio phonon calculations. Phys. Rev. B 48, 3164 (1993).CrossRefGoogle ScholarPubMed
Kadleíková, M., Breza, J., and Veselý, M.: Raman spectra of synthetic sapphire. Microelectron. J. 32, 955 (2001).CrossRefGoogle Scholar
Anastassakis, E., Pinczuk, A., and Burstein, E.: Effect of static uniaxial stress on the Raman spectrum of silicon. Solid State Commun. 8, 133 (1970).CrossRefGoogle Scholar
Mernagh, T.P. and Liu, L-G.: Pressure dependence of Raman phonons of some group IVA (C, Si, and Ge) elements. J. Phys. Chem. Solids 52, 507 (1991).CrossRefGoogle Scholar
Khachadorian, S., Papagelis, K., Scheel, H., Coli, A., Ferrari, A.C., and Thomsen, C.: High pressure Raman scattering of silicon nanowires. Nanotechnology 22, 195707 (2011).CrossRefGoogle ScholarPubMed
Debernardi, A., Baroni, S., and Molinari, E.: Anharmonic phonon lifetimes in semiconductors from density-functional perturbation theory. Phys. Rev. Lett. 75, 1819 (1995).CrossRefGoogle ScholarPubMed
Olijnyk, H.: Raman scattering in metallic Si and Ge up to 50 GPa. Phys. Rev. Lett. 68, 2232 (1992).CrossRefGoogle ScholarPubMed
Gaál-Nagy, K., Schmitt, M., Pavone, P., and Strauch, D.: Ab initio study of the high-pressure phase transition from the cubic-diamond to the β-tin structure of Si. Comput. Mater. Sci. 22, 49 (2001).CrossRefGoogle Scholar
Kim, D.E. and Oh, S.I.: Deformation pathway to high-pressure phases of silicon during nanoindentation. J. Appl. Phys. 104, 013502 (2008).CrossRefGoogle Scholar
Dubois, S.M-M., Rignanese, G-M., Pardoen, T., and Charlier, J-C.: Ideal strength of silicon: An ab initio study. Phys. Rev. B 74, 235203 (2006).CrossRefGoogle Scholar
Gilman, J.: Shear-induced metallization. Philos. Mag. B 67, 207 (1993).CrossRefGoogle Scholar
Durandurdu, M.: Diamond to β-tin phase transition of silicon under hydrostatic and nonhydrostatic compressions. J. Phys.: Condens. Matter 20, 325232 (2008).Google Scholar
Han, C-F. and Lin, J-F.: The model developed for stress-induced structural phase transformations in micro-crystalline silicon films. Nano-Micro Lett. 2, 68 (2010).CrossRefGoogle Scholar
Lin, Y-H., Jian, S-R., Lai, Y-S., and Yang, P-F.: Molecular dynamics simulations of nanoindentation-induced mechanical deformation and phase transformation in monocrystalline silicon. Nanoscale Res. Lett. 3, 71 (2008).CrossRefGoogle Scholar
Sanz-Navarro, C.F., Kenny, S.D., and Smith, R.: Atomistic simulations of structural transformations of silicon surfaces under nanoindentation. Nanotechnology 15, 692 (2004).CrossRefGoogle Scholar
Smith, G.S., Tadmor, E.B., Bernstein, N., and Kaxiras, E.: Multiscale simulations of silicon nanoindentation. Acta Mater. 49, 4089 (2001).CrossRefGoogle Scholar
Boyer, L.L., Kaxiras, E., Feldman, J.L., Broughton, J.Q., and Mehl, M.J.: New low-energy crystal structure for silicon. Phys. Rev. Lett. 67, 715 (1991).CrossRefGoogle ScholarPubMed
Qin, L., Teo, K.L., Shen, Z.X., Peng, C.S., and Zhou, J.M.: Raman scattering of Ge/Si dot superlattices under hydrostatic pressure. Phys. Rev. B 64, 075312 (2001).CrossRefGoogle Scholar
Cheong, W.C.D. and Zhang, L.C.: Stress criterion for the β-tin transformation in silicon under indentation and uniaxial compression. Key Eng. Mater. 233236, 603 (2003).CrossRefGoogle Scholar
Piltz, R.O., Maclean, J.R., Clark, S.J., Ackland, G.J., Hatton, P.D., and Crain, J.: Structure and properties of silicon XII: A complex tetrahedrally bonded phase. Phys. Rev. B 52, 4072 (1995).CrossRefGoogle ScholarPubMed
Winer, K.: Structural and vibrational properties of a realistic model of amorphous silicon. Phys. Rev. B 35, 2366 (1987).CrossRefGoogle ScholarPubMed
Khajehpour, J., Daoud, W.A., Williams, T., and Bourgeois, L.: Laser-induced reversible and irreversible changes in silicon nanostructures: One- and multi-phonon Raman scattering study. J. Phys. Chem. C 115, 22131 (2011).CrossRefGoogle Scholar
Lavrentiev, V., Vacik, J., Vorlicek, V., and Vosecek, V.: Raman scattering in silicon disordered by gold ion implantation. Phys. Status Solidi B 247, 2022 (2010).CrossRefGoogle Scholar
Olijnyk, H. and Jephcoat, A.: Effect of pressure on Raman spectra of metastable phases of Si and Ge. Phys. Status Solidi B 211, 413 (1999).3.0.CO;2-B>CrossRefGoogle Scholar
Ishidate, T., Inoue, K., Tsuji, K., and Minomura, S.: Raman scattering in hydrogenated amorphous silicon under high pressure. Solid State Commun. 42, 197 (1982).CrossRefGoogle Scholar