Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T15:46:53.506Z Has data issue: false hasContentIssue false

In situ laser recrystallization of Si layers during low-pressure chemical vapor deposition: Recrystallization dynamics and influence of the seed layer

Published online by Cambridge University Press:  31 January 2011

D. Della Sala
Affiliation:
ENEA–Casaccia, Via Anguillarese 301, 00060 S. Maria di Galeria, Italy
A. Santoni
Affiliation:
ENEA–Frascati, Via E. Fermi 45, 00040 Frascati, Italy Lab. TASC-INFM, Area Science Park, Basovizza S.S. 14, Km. 163, 5, I-34012 Trieste, Italy
L. Fornarini
Affiliation:
ENEA–Frascati, Via E. Fermi 45, 00040 Frascati, Italy
J. Lancok
Affiliation:
Academy of Science, Institute of Physics, Na Slovance 2, 182 21 Prague 8, Czech Republic
S. Loreti
Affiliation:
ENEA–Frascati, Via E. Fermi 45, 00040 Frascati, Italy
I. Menicucci
Affiliation:
ENEA–Frascati, Via E. Fermi 45, 00040 Frascati, Italy
C. Minarini
Affiliation:
ENEA–Portici, Localita‘Granatello, 80055 Portici, Italy
Get access

Abstract

The growth of polycrystalline silicon on glass by low-pressure chemical vapor deposition and in situ laser induced recrystallization was investigated with the aim to study the influence of the seed layer and the mechanism of the recrystallization dynamics on the structural and morphological properties of the grown film. A seed layer was used to trigger the solidification process of many additional in situ laser-crystallized overlayers. One-dimensional calculations of the thermal flow produced by laser irradiation were used to clarify the complex interaction between the substrate and the molten silicon surface layer during nucleation and growth. The experiments show the relevant role played by the seed layer and the peculiar shaping of the film surface due to the preferential aggregation of molten silicon. Compact polysilicon films with thicknesses up to 4 μm with almost monocrystalline grains of 1–2-μm size were obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hebling, C., Reber, S., Schmidt, K., Lüdemann, R., and Lutz, F., Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997 (IEEE Press, Piscataway, NJ, 1997).Google Scholar
2.Bai, J.Y., Ford, D.H., Rand, A., Hall, R.B., Kendall, C.L., and Barnett, A.M., Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997 (IEEE Press, Piscataway, NJ, 1997), pp. 3538.Google Scholar
3.Lüdemann, R., Schaefer, S., Schüle, C., and Hebling, C., Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997 (IEEE Press, Piscataway, NJ, 1997), pp. 159162.Google Scholar
4.Meier, J., Dubail, S., Cuperus, J., Kroll, U., Platz, R., Torres, P., Anna, J.A. Selvan, Perret, P., Beck, N., Vaucher, N. Pellaton, Hof, Ch., Fischer, D., Keppner, H., and A. Shah, J. Non-Cryst. Solids 227–230, 1250 (1998).CrossRefGoogle Scholar
5.Im, J.S., Kim, H.J., and Thompson, M.O., Appl. Phys. Lett. 63, 1969 (1993).CrossRefGoogle Scholar
6.Carey, P.G., Smith, P.M., Theiss, S.D., and Wickboldt, P., J. Vac. Sci. Technol., A 17, 1946 (1999).CrossRefGoogle Scholar
7.Mittiga, A., Fornarini, L., and Carluccio, R., Appl. Surf. Sci. 154, 112 (2000).CrossRefGoogle Scholar
8.Pribat, D., Legagneux, P., Plais, F., Petinot, F., Huet, O., and Reita, C., Ann. Phys. (Paris) 22, 213–224, suppl. C1, Feb–Apr (1997).Google Scholar
9.Bergmann, R.B., Darrant, J.G., Hyde, A.R., and Werner, J.H., J. Non-Cryst. Solids 218, 388 (1997).CrossRefGoogle Scholar
10.Andrä, G., Bergmann, J., Falk, F., and Ose, E., Thin Solid Films 318, 42 (1998).CrossRefGoogle Scholar
11.d’Aragona, F. Secco, J. Electrochem. Soc. 119, 948 (1972).Google Scholar
12.Bollanti, S., Bonfigli, F., Lazzaro, P. Di, Faenov, A., Flora, F., Giordano, G., Letardi, T., Limongi, T., Mezi, L., Murra, D., Pikuz, T., Palladino, L., Reale, A., Reale, L., Ritucci, A., Scafati, A., Tomassetti, G., Vitali, A., and Zheng, C.E., J. Phys. IV 11(PR7), 133–134 (2001).Google Scholar
13.Helen, Y., Gautier, G., Mourgues, K., Raoult, F., Mohammed-Brahim, T., Rogel, R., Bonnaud, O., Prat, C., and Lemoine, D., Solid State Phenom. 80–81, 175–180 (2001).Google Scholar
14.Loreti, S., Sala, D. Della, and Garozzo, M., Micron 31, 299 (2000).CrossRefGoogle Scholar
15.Shih, A., Meng, C.Y., Lee, S.C., and Chern, M.Y., J. Appl. Phys. 88, 3725 (2000).CrossRefGoogle Scholar
16.Mariucci, L., Carluccio, R., Pecora, A., Fortunato, G., Masussi, F., Foglietti, V., D. Della Sala, and J. Stoemenos, Solid State Phenom. 67–68, 175 (1999).CrossRefGoogle Scholar