Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T21:10:33.191Z Has data issue: false hasContentIssue false

In situ functionalization of gallium nitride powder with a porphyrin dye

Published online by Cambridge University Press:  27 May 2015

Brady L. Pearce
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
Stewart J. Wilkins
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
Matthew S. Rahn
Affiliation:
Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16801, USA
Albena Ivanisevic*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

This work focused on the modification of milled GaN powder. Successful attachment of a porphyrin derivative to a GaN powder was performed via in situ functionalization in the presence of phosphoric acid. The GaN powder was imaged using scanning electron microscopy and was found to be heterogeneous in nature, adopting no consistent geometry in the aggregates. The aqueous stability of the porphyrin used was observed in deionized water and a solution of phosphoric acid using ultraviolet–visible spectroscopy. Surface chemistry was characterized with x-ray photoelectron spectroscopy and infrared spectroscopy, which identified evidence of successful functionalization through the presence of characteristic peaks. The interface stability of the covalent bond between GaN and porphyrin was evaluated using fluorescence spectroscopy and demonstrated no leaching of dye in water solutions for 20 days.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Morkoc, H.: Handbook of Nitride Semiconductors and Devices, Material Properties, Physics and Growth, Vol. 1 (John Wiley & Sons, Weinheim, 2009); p. 1311.Google Scholar
Rohrbaugh, N., Bryan, I., Bryan, Z., Arellano, C., Collazo, R., and Ivanisevic, A.: AlGaN/GaN field effect transistors functionalized with recognition peptides. Appl. Phys. Lett. 105(13), 134103-1134103-5 (2014).Google Scholar
Bermudez, V.M.: Adsorption of 1-octanethiol on the GaN(0001) surface. Langmuir 19(17), 68136819 (2003).Google Scholar
Peczonczyk, S.L., Mukherjee, J., Carim, A.I., and Maldonado, S.: Wet chemical functionalization of III-V semiconductor surfaces: Alkylation of gallium arsenide and gallium nitride by a Grignard reaction sequence. Langmuir 28(10), 46724682 (2012).CrossRefGoogle ScholarPubMed
Kim, H., Colavita, P.E., Metz, K.M., Nichols, B.M., Sun, B., Uhlrich, J., Wang, X.Y., Kuech, T.F., and Hamers, R.J.: Photochemical functionalization of gallium nitride thin films with molecular and biomolecular layers. Langmuir 22(19), 81218126 (2006).Google Scholar
Schwarz, S.U., Cimalla, V., Eichapfel, G., Himmerlich, M., Krischok, S., and Ambacher, O.: Thermal functionalization of GaN surfaces with 1-alkenes. Langmuir 29(21), 62966301 (2013).Google Scholar
Guo, D.J., Abdulagatov, A.I., Rourke, D.M., Bertness, K.A., George, S.M., Lee, Y.C., and Tan, W.: GaN nanowire functionalized with atomic layer deposition techniques for enhanced immobilization of biomolecules. Langmuir 26(23), 1838218391 (2010).Google Scholar
Ito, T., Forman, S.M., Cao, C., Li, F., Eddy, C.R., Mastro, M.A., Holm, R.T., Henry, R.L., Hohn, K.L., and Edgar, J.H.: Self-assembled monolayers of alkylphosphonic acid on GaN substrates. Langmuir 24(13), 66306635 (2008).Google Scholar
Bermudez, V.M.: Adsorption and photodissociation of 4-haloanilines on GaN(0001). Surf. Sci. 519(3), 173184 (2002).Google Scholar
Bermudez, V.M.: Functionalizing the GaN(0001)-(1x1) surface I. The chemisorption of aniline. Surf. Sci. 499(2–3), 109123 (2002).CrossRefGoogle Scholar
Bermudez, V.M.: Functionalizing the GaN(0001)-(1x1) surface II. Chemisorption of 3-pyrroline. Surf. Sci. 499(2–3), 124134 (2002).Google Scholar
Bermudez, V.M. and Long, J.P.: Chemisorption of H2O on GaN(0001). Surf. Sci. 450(1–2), 98105 (2000).Google Scholar
Bermudez, V.M.: Investigation of the initial chemisorption and reaction of fluorine (XeF2) with the GaN(0001)-(1x1) surface. Appl. Surf. Sci. 119(1–2), 147159 (1997).Google Scholar
Wilkins, S.J., Paskova, T., and Ivanisevic, A.: Modified surface chemistry, potential, and optical properties of polar gallium nitride via long chained phosphonic acids. Appl. Surf. Sci. 327, 498503 (2015).Google Scholar
Arisio, C., Cassou, C.A., and Lieberman, M.: Loss of siloxane monolayers from GaN surfaces in water. Langmuir 29(17), 51455149 (2013).CrossRefGoogle ScholarPubMed
Foster, C.M., Collazo, R., Sitar, Z., and Ivanisevic, A.: Aqueous stability of Ga- and N-polar gallium nitride. Langmuir 29(1), 216220 (2013).Google Scholar
Jung, Y., Ahn, J., Baik, K.H., Kim, D., Pearton, S.J., Ren, F., and Kim, J.: Chemical etch characteristics of N-face and Ga-face GaN by phosphoric acid and potassium hydroxide solutions. J. Electrochem. Soc. 159(2), H117H120 (2012).Google Scholar
Lopez-Gejo, J., Navarro-Tobar, A., Arranz, A., Palacio, C., Munoz, E., and Orellana, G.: Direct grafting of long-lived luminescent indicator dyes to GaN light-emitting diodes for chemical microsensor development. ACS Appl. Mater. Interfaces 3(10), 38463854 (2011).Google Scholar
Odobel, F., Blart, E., Lagree, M., Villieras, M., Boujtita, H., El Murr, N., Caramori, S., and Bignozzi, C.A.: Porphyrin dyes for TiO2 sensitization. J. Mater. Chem. 13(3), 502510 (2003).Google Scholar
Hendry, E., Koeberg, M., O'Regan, B., and Bonn, M.: Local field effects on electron transport in nanostructured TiO2 revealed by terahertz spectroscopy. Nano Lett. 6(4), 755759 (2006).Google Scholar
Klaumunzer, M., Kahnt, A., Burger, A., Mackovic, M., Munzel, C., Srikantharajah, R., Spiecker, E., Hirsch, A., Peukert, W., and Guldi, D.M.: Surface functionalization and electronic interactions of ZnO nanorods with a porphyrin derivative. ACS Appl. Mater. Interfaces 6(9), 67246730 (2014).Google Scholar
Sunkara, M.K., Pendyala, C., Cummins, D., Meduri, P., Jasinski, J., Kumar, V., Russell, H.B., Clark, E.L., and Kim, J.H.: Inorganic nanowires: A perspective about their role in energy conversion and storage applications. J. Phys. D: Appl. Phys. 44(17), 9 (2011).Google Scholar
Jewett, S.A., Makowski, M.S., Andrews, B., Manfra, M.J., and Ivanisevic, A.: Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater. 8(2), 728733 (2012).Google Scholar
Millet, P., Calka, A., Williams, J.S., and Vantenaar, G.J.H.: Formation of gallium nitride by a novel hot mechanical alloying process. Appl. Phys. Lett. 63(18), 25052507 (1993).Google Scholar
Swamy, A.K.N., Shafirovich, E., and Ramana, C.V.: Synthesis of one-dimensional Ga2O3 nanostructures via high-energy ball milling and annealing of GaN. Ceram. Int. 39(6), 72237227 (2013).Google Scholar
Carin, R., Deville, J.P., and Werckmann, J.: An XPS study of GaN thin-films on GaAs. Surf. Interface Anal. 16(1–12), 6569 (1990).Google Scholar
Cherian, S. and Wamser, C.C.: Adsorption and photoactivity of tetra(4-carboxyphenyl)porphyrin (TCPP) on nanoparticulate TiO2 . J. Phys. Chem. B 104(15), 36243629 (2000).Google Scholar
Brennan, B.J., Portoles, M.J.L., Liddell, P.A., Moore, T.A., Moore, A.L., and Gust, D.: Comparison of silatrane, phosphonic acid, and carboxylic acid functional groups for attachment of porphyrin sensitizers to TiO2 in photoelectrochemical cells. Phys. Chem. Chem. Phys. 15(39), 1660516614 (2013).Google Scholar
Wilkins, S.J., Greenough, M., Arellano, C., Paskova, T., and Ivanisevic, A.: In situ chemical functionalization of gallium nitride with phosphonic acid derivatives during etching. Langmuir 30(8), 20382046 (2014).Google Scholar
Vericat, C., Vela, M.E., Corthey, G., Pensa, E., Cortes, E., Fonticelli, M.H., Ibanez, F., Benitez, G.E., Carro, P., and Salvarezza, R.C.: Self-assembled monolayers of thiolates on metals: A review article on sulfur-metal chemistry and surface structures. RSC Adv. 4(53), 2773027754 (2014).Google Scholar
Silipigni, L., De Luca, G., Quattrone, Q., Scolaro, L.M., Salvato, G., and Grasso, V.: An XPS analysis of the interaction of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin with exfoliated manganese thiophosphate. J. Phys.: Condens. Matter 18(24), 57595772 (2006).Google Scholar
Wilkins, S.J., Paskova, T., and Ivanisevic, A.: Effect of etching with cysteamine assisted phosphoric acid on gallium nitride surface oxide formation. J. Appl. Phys. 114(6), 064907-1064907-6 (2013).Google Scholar
Makowski, M.S., Zemlyanov, D.Y., Lindsey, J.A., Bernhard, J.C., Hagen, E.M., Chan, B.K., Petersohn, A.A., Medow, M.R., Wendel, L.E., Chen, D.F., Canter, J.M., and Ivanisevic, A.: Covalent attachment of a peptide to the surface of gallium nitride. Surf. Sci. 605(15–16), 14661475 (2011).Google Scholar
Watkins, N.J., Wicks, G.W., and Gao, Y.L.: Oxidation study of GaN using x-ray photoemission spectroscopy. Appl. Phys. Lett. 75(17), 26022604 (1999).Google Scholar
Evans, S.: Energy calibration secondary standards for X-ray photoelectron spectrometers. Surf. Interface Anal. 7(6), 299302 (1985).Google Scholar
Fairley, N.: Casa XPS, 2.3.16 PR; Casa Software Ltd, 2009.Google Scholar
Foster, C.M., Collazo, R., Sitar, Z., and Ivanisevic, A.: Cell behavior on gallium nitride surfaces: Peptide affinity attachment versus covalent functionalization. Langmuir 29(26), 83778384 (2013).CrossRefGoogle ScholarPubMed
Macquet, J.P., Millard, M.M., and Theophanides, T.: X-Ray photoelectron-spectroscopy of porphyrins. J. Am. Chem. Soc. 100(15), 47414746 (1978).Google Scholar
Sarno, D.M., Matienzo, L.J., and Jones, W.E.: X-ray photoelectron spectroscopy as a probe of intermolecular interactions in porphyrin polymer thin films. Inorg. Chem. 40(24), 63086315 (2001).Google Scholar
Baraton, M.I. and Gonsalves, K.E.: An IR spectroscopic investigation of nanostructured AlN and GaN powder surfaces. J. Cluster Sci. 10(1), 133154 (1999).Google Scholar
Wei, X.F. and Shi, F.: Synthesis and characterization of GaN nanowires by a catalyst assisted chemical vapor deposition. Appl. Surf. Sci. 257(23), 99319934 (2011).Google Scholar
Shi, F. and Xue, C.S.: Influence of reaction time on growth of GaN nanowires fabricated by CVD method. J. Mater. Sci.: Mater. Electron. 22(12), 18351840 (2011).Google Scholar
Xiao, H.D., Liu, R., Ma, H.L., Lin, Z.J., Ma, J., Zong, F.J., and Mei, L.M.: Thermal stability of GaN powders investigated by XRD, XPS, PL, TEM, and FT-IR. J. Alloys Compd. 465(1–2), 340343 (2008).CrossRefGoogle Scholar
Brandt, M.S., Ager, J.W., Gotz, W., Johnson, N.M., Harris, J.S., Molnar, R.J., and Moustakas, T.D.: Local vibrational-modes in Mg-doped gallium nitride. Phys. Rev. B 49(20), 1475814761 (1994).Google Scholar
Ogoshi, H., Nakamoto, K., and Saito, Y.: Infrared-spectra and normal coordinate analysis of metalloporphins. J. Chem. Phys. 57(10), 4194 (1972).Google Scholar
Santiago, P.S., Moreira, L.M., and Tabak, M.: Phosphate group effects upon the equilibrium of iron(III) meso-tetrakis (4-N-methylpyridiniumyl) porphyrin in aqueous solution. J. Inorg. Biochem. 100(11), 17151721 (2006).Google Scholar