Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T03:14:02.528Z Has data issue: false hasContentIssue false

In situ characterization of vapor phase growth of iron oxide-silica nanocomposites: Part I. 2-D planar laser-induced fluorescence and Mie imaging

Published online by Cambridge University Press:  31 January 2011

Brian K. McMillin
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899–0001
Pratim Biswas
Affiliation:
Aerosol and Air Quality Research Laboratory, Department of Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221–0071
Michael R. Zachariah*
Affiliation:
Chemical Science and Technology Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899–0001
*
c) Author to whom correspondence should be addressed.
Get access

Abstract

Planar laser-based imaging measurements of fluorescence and particle scattering have been obtained during flame synthesis of iron-oxide/silica superparamagnetic nanocomposites. The theory and application of laser-induced fluorescence, the spectroscopy of FeO(g), and the experimental approach for measurement of gas phase precursors to particle formation are discussed. The results show that the vapor phase FeO concentration rapidly rises at the primary reaction front of the flame and is very sensitive to the amount of precursor added, suggesting nucleation-controlled particle growth. The FeO vapor concentration in the main nucleation zone was found to be insensitive to the amount of silicon precursor injected, indicating that nucleation occurred independently for the iron and silicon components. Light scattering measurements indicate that nanocomposite particles sinter faster than single component silica, in agreement with TEM measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Siegel, R. W. and Eastman, J.A., in Multicomponent Ultrafine Microstructures, edited by McCandlish, L.E., Polk, D. E., Siegel, R.W., and Kear, B.H. (Mater. Res. Soc. Symp. Proc. 132, Pittsburgh, PA, 1989), p. 3.Google Scholar
2.Siegel, R. W., Mater. Res. Soc. Bull., October, 60 (1990).CrossRefGoogle Scholar
3.Pechenik, A., Piermarini, G. J., and Danforth, S.C., J. Am. Ceram. Soc. 75, 3283 (1992).CrossRefGoogle Scholar
4.Flagan, R. C., Atwitter, H. A., and Vahala, K. J., J. Aerosol Sci. 22, S31 (1991).CrossRefGoogle Scholar
5.Gurav, A., Kodas, T., Pluyn, T., and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar
6.Willeke, K. and Baron, P. A., Aerosol Measurement: Principles, Techniques, and Applications (Van Nostrand Reinhold, New York, 1993).Google Scholar
7.Zachariah, M. R. and Joklik, R. G., J. Appl. Phys. 68, 311 (1990).CrossRefGoogle Scholar
8.Eckbreth, A. C., Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Cambridge, MA, 1988).Google Scholar
9.Marcus, R. K., Glow Discharge Spectroscopies (Plenum Press, New York, 1993).CrossRefGoogle Scholar
10.Zachariah, M. R. and Burgess, D. R. F. Jr., J. Aerosol Sci. 25, 487 (1994).CrossRefGoogle Scholar
11.Zachariah, M.R., Chin, D., Katz, J. L., and Semerjian, H. G., Appl. Opt. 28, 530 (1989).CrossRefGoogle Scholar
12.Zachariah, M.R., Chin, D., Semerjian, H.G., and Katz, J.L., Combustion Flame 78, 287 (1989).CrossRefGoogle Scholar
13.Chang, H. and Biswas, P.J. Colloid Int. Sci. 153, 157 (1992).CrossRefGoogle Scholar
14.Hanson, R. K., (1986) Twenty-First Symposium (International) on Combustion, p. 1677 (The Combustion Institute, Pittsburgh, PA).Google Scholar
15.Hanson, R. K., Seitzman, J.M., and Paul, P. H., Appl. Phys. B 50, 441 (1990).CrossRefGoogle Scholar
16.Zachariah, M. R., Aquino, M., Shull, R., and Steel, E., Nanostructured Materials, 5, 383 (1995).CrossRefGoogle Scholar
17.Kodas, T. T., Engler, E., Lee, V., Jacowitz, R., Baum, T. H., Roche, K., Perkin, S. S. P., Yound, W. S., Hughes, S., Kedler, J., and Auser, W., Appl. Phys. Lett. 52, 1622 (1988).CrossRefGoogle Scholar
18.Toghe, N., Tatsumisago, M., Minami, T., Okuyama, K., Adachi, Mi., and Kousaka, Y.Jpn. J. Appl. Phys. 27, 292 (1988).Google Scholar
19.Biswas, P., Zhou, D., Zitkovsky, I., Blue, C., and Boolchand, P., Mater. Lett. 8, 233 (1989).CrossRefGoogle Scholar
20.Zachariah, M. R. and Huzarewicz, S., J. Mater. Res. 6, 264 (1991).CrossRefGoogle Scholar
21.Zhou, D., Biswas, P., Oostens, J., and Boolchand, P., J. Am. Ceram. Soc. 76, 678 (1993).CrossRefGoogle Scholar
22.Chang, H., Lin, W. Y., and Biswas, P., Aerosol Sci. Technol. 22, 14 (1995).CrossRefGoogle Scholar
23.Li, Q., Sorensen, C. M., Klabunde, K. J., and Hadjipanayis, G. C., Aerosol Sci. Technol. 19, 453 (1993).CrossRefGoogle Scholar
24.Biswas, P., Lin, S. Y., and Boolchand, P., J. Aerosol Sci. 23, 273 (1992).CrossRefGoogle Scholar
25.Chandler, C. D., Powell, Q., Hampden Smith, M. J., and Kodas, T. T., J. Mater. Chem. 3, 775 (1993).CrossRefGoogle Scholar
26.Measures, R. M., Laser Remote Sensing: Fundamentals and Applications (John Wiley / Sons, New York, 1984).Google Scholar
27.Kerker, M., The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969).Google Scholar
28.Cheung, A. S-C., Lyyra, A. M., Merer, A. J., and Taylor, A. W., J. Mol. Spectrosc. 102, 224 (1983).CrossRefGoogle Scholar
29.Harris, S. M. and Barrow, R. F., J. Molec. Spectros. 84, 334 (1980).CrossRefGoogle Scholar
30.Herzberg, G., Molecular Spectra and Molecular Structure, I. Spectra of Diatomic Molecules (Van Nostrand Reinhold, Co., New York, 1950).Google Scholar
31.Cheung, A. S-C., Lee, N., Lyyra, A. M., Merer, A. J., and Taylor, A. W., J. Mol. Spectrosc. 95, 213 (1982).CrossRefGoogle Scholar
32.Tatum, J. B., Astrophys. J. Supplement 14, 21 (1967).CrossRefGoogle Scholar
33.Lewis, B. and von Elbe, G., Combustion, Flames and Explosions of Gases (Academic Press, New York, 1987).Google Scholar
34.Zachariah, M. R. and Tsang, W.Aerosol Sci. Technol. 19, 499 (1993).CrossRefGoogle Scholar
35.Zachariah, M. R. and Tsang, W., J. Phys. Chem. 99, 5308 (1995).CrossRefGoogle Scholar
36.Bedanov, V., Tsang, W., and Zachariah, M. R., J. Phys. Chem. 99, 11452 (1995).CrossRefGoogle Scholar
37.Helble, J. J. and Sarofim, A. F., J. Coll. Int. Sci 128, 348 (1989).CrossRefGoogle Scholar