Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:42:20.829Z Has data issue: false hasContentIssue false

In situ and ex situ transmission electron microscopy investigation of Cu–Al–Cu–Ti reactive metallic multilayer coatings

Published online by Cambridge University Press:  31 January 2011

M.A. Mat Yajid*
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom; and Department of Engineering Materials, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
G. Möbus
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield S1 3JD, United Kingdom
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Metallic multilayers of Cu/Al/Ti composition were studied by transmission electron microscopy (TEM) and plasmon energy-loss mapping as prototypes of nanoscale reactive multilayer systems with exothermic alloy formation in oxygen-free conditions. The selection and arrangement of alloy phases by the system during ex situ and in situ heating experiments were found to depend not only on temperature but strongly on the initial volume ratios of metals, and to a lesser degree on the dimensionality of the reactive sample. Here, a two-dimensional sample was represented by ex situ heating of the full multilayer structure, a one-dimensional sample refers to in situ heating of thin cross-sectional TEM specimens, while a zero-dimensional sample (or metallic dot-array) was obtained after cutting thin pillars using focused ion beams. Lamellar self-organized alternation between Heusler phase and Cu9Al4 was found.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Campisano, S.U., Costanzo, E., Scaccianoce, F., Cristofolini, R.Growth kinetics of the [theta] phase in Al–Cu thin film bilayers. Thin Solid Films 52, 97 (1978)CrossRefGoogle Scholar
2.Dutkiewicz, J., Morgiel, J., Salawa, J.Effect of titanium on the structure and mechanical properties of Cu–Al–Ti alloys. J. Mater. Sci. 19, 24 (1984)CrossRefGoogle Scholar
3.Gershinskii, A.E., Fomin, B.I., Cherepov, E.I., Edelman, F.L.Investigation of diffusion in the Cu–Al thin film system. Thin Solid Films 42, 269 (1977)CrossRefGoogle Scholar
4.Jiang, H.G., Dai, J.Y., Tong, H.Y., Ding, B.Z., Song, Q.H., Hu, Z.Q.Interfacial reactions on annealing Cu/Al multilayer thin-films. J. Appl. Phys. 74, 6165 (1993)CrossRefGoogle Scholar
5.Rajan, K., Wallach, E.R.A transmission-electron-microscopy study of intermetallic formation in aluminum-copper thin-film couples. J. Cryst. Growth 49, 297 (1980)CrossRefGoogle Scholar
6.Rayne, J.A., Shearer, M.P., Bauer, C.L.Investigation of interfacial reactions in thin film couples of aluminum and copper by measurement of low temperature contact resistance. Thin Solid Films 65, 381 (1980)CrossRefGoogle Scholar
7.Vandenberg, J.M., Hamm, R.A.An in situ x-ray study of phase formation in Cu–Al thin film couples. Thin Solid Films 97, 313 (1982)CrossRefGoogle Scholar
8.Cha, L., Scheu, C., Richter, G., Wagner, T., Sturm, S., Rühle, M.First observation of a hexagonal close packed metastable intermetallic phase between Cu and Al bilayer films. Int. J. Mater. Res. 98, 692 (2007)CrossRefGoogle Scholar
9.Dehm, G., Scheu, C., Rühle, M., Raj, R.Growth and structure of internal Cu/Al2O3 and Cu/Ti/Al2O3 interfaces. Acta Mater. 46, 759 (1998)CrossRefGoogle Scholar
10.Hofmann, M., Gemming, T., Menzel, S., Wetzig, K.Microstructure of Al/Ti metallization layers. Z. Metallkd. 94, 317 (2003)CrossRefGoogle Scholar
11.Hofmann, M., Gemming, T., Wetzig, K.Microstructure and composition of annealed Al/Ti-metallization layers. Anal. Bioanal. Chem. 379, 547 (2004)CrossRefGoogle ScholarPubMed
12.Thiam, M.M., Nehasil, V., Matolin, V., Gruzza, B.The AES and EELS study of small rhodium clusters deposited onto alumina substrates. Surf. Sci. 487, 231 (2001)CrossRefGoogle Scholar
13.Schmid-Fetzer, R.Materials Science International TeamMSIT—Light Metals Systems Part 2 (Springer, Berlin 2005)1Google Scholar
14.Mat Yajid, M.A., Wagner, T., Möbus, G.Plasmon energy chemical phase mapping of reactive multilayers. Phys. Status Solidi RRL 2, 7 (2008)CrossRefGoogle Scholar
15.Mat Yajid, M.A., Möbus, G.Reactive multilayers examined by HRTEM and plasmon EELS chemical mapping. Microsc. Microanal. 15, 54 (2009)CrossRefGoogle Scholar
16.Yajid, M.A. Mat, Doole, R.C., Wagner, T., Möbus, G.Heating and EELS experiments of CuAl reactive multilayers. J. Phys. Conf. Ser. 126, 012064 (2008)CrossRefGoogle Scholar
17.Oh, S.H., Scheu, C., Wagner, T., Tchernychova, E., Rühle, M.Epitaxy and bonding of Cu films on oxygen-terminated [alpha]-Al2O3(0 0 0 1) surfaces. Acta Mater. 54, 2685 (2006)CrossRefGoogle Scholar
18.Du, Y., Chang, Y.A., Huang, B., Gong, W., Jin, Z., Xu, H., Yuan, Z., Liu, Y., He, Y., Xie, F.Y.Diffusion coefficients of some solutes in fcc and liquid Al: Critical evaluation and correlation. Mater. Sci. Eng., A 363, (1–2)140 (2003)CrossRefGoogle Scholar
19.Grin, Y., Wagner, F.R., Armbruster, M., Kohout, M., Leithe-Jasper, A., Schwarz, U., Wedig, U., Georg von Schnering, H.CuAl2 revisited: Composition, crystal structure, chemical bonding, compressibility and Raman spectroscopy. J. Solid State Chem. 179, 1707 (2006)CrossRefGoogle Scholar
20.Wolverton, C., Ozoliņš, V.Entropically favored ordering: The metallurgy of Al2Cu revisited. Phys. Rev. Lett. 86, 5518 (2001)CrossRefGoogle ScholarPubMed
21.Egerton, R.F.Electron Energy-Loss Spectroscopy 2nd ed (Plenum Press, New York 1996)CrossRefGoogle Scholar
22.Meyer Zu Reckendorf, R., Schmidt, P.C., Weiss, A.The ternary systems Cu–Ti–Al and Cu–Zr–Al around the heusler phase composition Cu2XAl (X = Ti,Zr): Phase diagrams and hydrogen solubility. J. Less-Common Met. 159, 277 (1990)CrossRefGoogle Scholar
23.Vaidyanathan, T.K., Mukherjee, K.Continuous precipitation in Cu-rich Cu–Ti binary and Cu–Ti–Al ternary alloys. J. Mater. Sci. 10, 1697 (1975)CrossRefGoogle Scholar
24.Yamada, M., Matsui, N., Kamiya, N., Miyazaki, K., Tanaka, K.Structure and crystallization of Cu(50)Ti(50-x)Al(x) amorphous alloys. Mater. Trans., JIM 35, 1 (1994)CrossRefGoogle Scholar
25.Blobaum, K.J., Reiss, M.E., Plitzko Lawrence, J.M., Weihs, T.P.Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry. J. Appl. Phys. 94, 2915 (2003)CrossRefGoogle Scholar
26.Wieczorek-Ciurowa, K., Gamrat, K., Sawlowicz, Z.Characteristics of CuAl2–Cu9Al4/Al2O3 nanocomposites synthesized by mechanical treatment. J. Therm. Anal. Calorim. 80, 619 (2005)CrossRefGoogle Scholar