Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T00:26:47.485Z Has data issue: false hasContentIssue false

Improving the interface adherence at sealings in solid oxide cell stacks

Published online by Cambridge University Press:  08 February 2019

Ilaria Ritucci*
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
Ragnar Kiebach
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
Belma Talic
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
Li Han
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
Philipp Zielke
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
Peter V. Hendriksen
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
Henrik L. Frandsen
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde, Denmark
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thermal cycling of planar solid oxide cell (SOC) stacks can lead to failure due to thermal stresses arising from differences in thermal expansion of the stack’s materials. The interfaces between the cell, interconnect, and sealing are particularly critical. Hence, understanding possible failure mechanisms at the interfaces and developing robust sealing concepts are important for stack reliability. In this work, the mechanical performance of interfaces in the sealing region of SOC stacks is studied. Joints comprising Crofer22APU (preoxidized or coated with MnCo2O4 or Al2O3) are sealed using V11 glass. The fracture energy of the joints is measured, and the fractured interfaces are analyzed using microscopy. The results show that choosing the right coating solution would increase the fracture energy of the sealing area by more than 70%. We demonstrate that the test methodology could also be used to test the adhesion of thin coatings on metallic substrates.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhao, Y., Xia, C., Jia, L., Wang, Z., Li, H., Yu, J., and Li, Y.: Recent progress on solid oxide fuel cell: Lowering temperature and utilizing non-hydrogen fuels. Int. J. Hydrogen Energy 38, 16498 (2013).CrossRefGoogle Scholar
Kalra, P., Garg, R., and Kumar, A.: Solid oxide fuel cell—A future source of power and heat generation. Mater. Sci. Forum 757, 217 (2013).CrossRefGoogle Scholar
Ormerod, R. Mark: Chapter 12 - Fuels and Fuel Processing, Singhal, S. C., Kendall, K., eds., In High Temperature and Solid Oxide Fuel Cells, 333361 (Elsevier Science, New York, 2003).CrossRefGoogle ScholarPubMed
Nechache, A., Cassir, M., and Ringuedé, A.: Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review. J. Power Sources 258, 164181 (2014).Google Scholar
Hauch, A., Ebbesen, S.D., Jensen, S.H., and Mogensen, M.: Solid oxide electrolysis cells: Microstructure and degradation of the Ni/yttria-stabilized zirconia electrode. J. Electrochem. Soc. 155, B1184 (2008).CrossRefGoogle Scholar
Ebbesen, S.D. and Mogensen, M.: Electrolysis of carbon dioxide in solid oxide electrolysis cells. J. Power Sources 193, 349 (2009).CrossRefGoogle Scholar
Ruiz-Morales, J.C., Marrero-López, D., Canales-Vázquez, J., and Irvine, J.T.S.: Symmetric and reversible solid oxide fuel cells. RSC Adv. 1, 1403 (2011).CrossRefGoogle Scholar
Tu, H. and Stimming, U.: Advances, aging mechanisms and lifetime in solid-oxide fuel cells. J. Power Sources 127, 284 (2004).CrossRefGoogle Scholar
Boccaccini, D.N., Sevecek, O., Frandsen, H.L., Dlouhy, I., Molin, S., Charlas, B., Hjelm, J., Cannio, M., and Hendriksen, P.V.: Determination of the bonding strength in solid oxide fuel cells’ interfaces by Schwickerath crack initiation test. J. Eur. Ceram. Soc. 37, 3565 (2017).CrossRefGoogle Scholar
Park, K., Yu, S., Bae, J., Kim, H., and Ko, Y.: Fast performance degradation of SOFC caused by cathode delamination in long-term testing. Int. J. Hydrogen Energy 35, 8670 (2010).CrossRefGoogle Scholar
Klemensø, T., Boccaccini, D., Brodersen, K., Frandsen, H.L., and Hendriksen, P.V.: Development of a novel ceramic support layer for planar solid oxide cells. Fuel Cells 14, 153 (2014).CrossRefGoogle Scholar
Lessing, P.A.: A review of sealing technologies applicable to solid oxide electrolysis cells. J. Mater. Sci. 42, 3465 (2007).CrossRefGoogle Scholar
Chou, Y.S., Thomsen, E.C., Williams, R.T., Choi, J.P., Canfield, N.L., Bonnett, J.F., Stevenson, J.W., Shyam, A., and Lara-Curzio, E.: Compliant alkali silicate sealing glass for solid oxide fuel cell applications: Thermal cycle stability and chemical compatibility. J. Power Sources 196, 2709 (2011).CrossRefGoogle Scholar
Singh, R.N.: Sealing technology for solid oxide fuel cells. Int. J. Appl. Ceram. Technol. 4, 134 (2007).CrossRefGoogle Scholar
Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani, K.: Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 72, 141 (2015).CrossRefGoogle Scholar
Mahapatra, M.K. and Lu, K.: Seal glass for solid oxide fuel cells. J. Power Sources 195, 7129 (2010).CrossRefGoogle Scholar
Simner, S.P. and Stevenson, J.W.: Compressive mica seals for SOFC applications. J. Power Sources 102, 310 (2001).CrossRefGoogle Scholar
Chou, Y., Choi, J., Xu, W., Stephens, E., Koeppel, B., Stevenson, J., and Lara-Curzio, E.: Compliant Glass Seals for SOFC Stacks (U.S. Department of Energy, Washington, DC, 2014).CrossRefGoogle Scholar
Tulyaganov, D.U., Reddy, A.A., Kharton, V.V., and Ferreira, J.M.F.: Aluminosilicate-based sealants for SOFCs and other electrochemical applications—A brief review. J. Power Sources 242, 486 (2013).CrossRefGoogle Scholar
Weil, K.S.: The state-of-the-art in sealing technology for solid oxide fuel cells. JOM 58, 37 (2006).CrossRefGoogle Scholar
Reddy, A.A., Tulyaganov, D.U., Kharton, V.V., and Ferreira, J.M.F.: Development of bilayer glass-ceramic SOFC sealants via optimizing the chemical composition of glasses—A review. J. Solid State Electrochem. 19, 2899 (2015).CrossRefGoogle Scholar
Yang, Z., Meinhardt, K.D., and Stevenson, J.W.: Chemical compatibility of barium–calcium–aluminosilicate-based sealing glasses with the ferritic stainless steel interconnect in SOFCs. J. Electrochem. Soc. 150, A1095 (2003).CrossRefGoogle Scholar
Smeacetto, F., Salvo, M., Ferraris, M., Cho, J., and Boccaccini, A.R.: Glass-ceramic seal to join crofer 22 APU alloy to YSZ ceramic in planar SOFCs. J. Eur. Ceram. Soc. 28, 61 (2008).CrossRefGoogle Scholar
Sabato, A.G., Cempura, G., Montinaro, D., Chrysanthou, A., Salvo, M., Bernardo, E., Secco, M., and Smeacetto, F.: Glass-ceramic sealant for solid oxide fuel cells application: Characterization and performance in dual atmosphere. J. Power Sources 328, 262 (2016).CrossRefGoogle Scholar
Milhans, J., Khaleel, M., Sun, X., Tehrani, M., Al-Haik, M., and Garmestani, H.: Creep properties of solid oxide fuel cell glass-ceramic seal G18. J. Power Sources 195, 3631 (2010).CrossRefGoogle Scholar
Naylor, M.O., Jin, T., Shelby, J.E., and Misture, S.T.: Galliosilicate glasses for viscous sealant in solid oxide fuel cell stacks: Part I: Compositional design. Int. J. Hydrogen Energy 38, 16300 (2013).CrossRefGoogle Scholar
Kiebach, R., Agersted, K., Zielke, P., Ritucci, I., Brock, M.B., and Hendriksen, P.V.: A novel SOFC/SOEC sealing glass with a low SiO2 content and a high thermal expansion coefficient. ECS Trans. 78, 1739 (2017).CrossRefGoogle Scholar
Misture, S.T., Naylor, M.O., Jin, T., and Shelby, J.E.: Galliosilicate glasses for viscous sealants in solid oxide fuel cell stacks: Part II: Interactions with yttria stabilized zirconia and stainless steel coated with alumina. Int. J. Hydrogen Energy 38, 16328 (2013).CrossRefGoogle Scholar
Chou, Y.S., Stevenson, J.W., Xia, G.G., and Yang, Z.G.: Electrical stability of a novel sealing glass with (Mn,Co)-spinel coated Crofer22APU in a simulated SOFC dual environment. J. Power Sources 195, 5666 (2010).CrossRefGoogle Scholar
Mouhib, N., Ouaomar, H., Lahlou, M., and El Ghorba, M.: Mechanical behavior. Int. J. Res. 2, 495 (2015).Google Scholar
Lahl, N., Singheiser, L., and Hilpert, K.: Aluminosilicate glass ceramics as sealant. Proc. Electrochem. Soc. 99, 1057 (1999).Google Scholar
Ritucci, I., Agersted, K., Zielke, P., Wulff, A.C., Khajavi, P., Smeacetto, F., Sabato, A.G., and Kiebach, R.: A Ba-free sealing glass with a high coefficient of thermal expansion and excellent interface stability optimized for SOFC/SOEC stack applications. Int. J. Appl. Ceram. Technol. 15, 10111022 (2018).CrossRefGoogle Scholar
Sun, B., Rudkin, R.A., and Atkinson, A.: Effect of thermal cycling on residual stress and curvature of anode-supported SOFCs. Fuel Cell. 9, 805 (2009).CrossRefGoogle Scholar
VDM-Metals: VDM® Crofer 22 APU. No. Werkstoffdatenblatt Ausgabe Januar, 10, 2010.Google Scholar
Talic, B., Falk-Windisch, H., Venkatachalam, V., Hendriksen, P.V., Wiik, K., and Lein, H.L.: Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects. J. Power Sources 354, 57 (2017).CrossRefGoogle Scholar
Talic, B., Molin, S., Wiik, K., Hendriksen, P.V., and Lein, H.L.: Comparison of iron and copper doped manganese cobalt spinel oxides as protective coatings for solid oxide fuel cell interconnects. J. Power Sources 372, 145 (2017).CrossRefGoogle Scholar
Molin, S., Jasinski, P., Mikkelsen, L., Zhang, W., Chen, M., and Hendriksen, P.V.: Low temperature processed MnCo2O4 and MnCo1.8Fe0.2O4 as effective protective coatings for solid oxide fuel cell interconnects at 750 °C. J. Power Sources 336, 408 (2016).CrossRefGoogle Scholar
Palcut, M., Mikkelsen, L., Neufeld, K., Chen, M., Knibbe, R., and Hendriksen, P.V.: Efficient dual layer interconnect coating for high temperature electrochemical devices. Int. J. Hydrogen Energy 37, 14501 (2012).CrossRefGoogle Scholar
Bentzen, J.J., Høgh, J.V.T., Barfod, R., and Hagen, A.: Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodes. Fuel Cells 9, 823 (2009).CrossRefGoogle Scholar
Hilpert, K.: Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes. J. Electrochem. Soc. 143, 3642 (1996).CrossRefGoogle Scholar
Taniguchi, S., Kadowaki, M., Kawamura, H., Yasuo, T., Akiyama, Y., Miyake, Y., and Saitoh, T.: Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator. J. Power Sources 55, 73 (1995).CrossRefGoogle Scholar
Zhang, T., Brow, R.K., Fahrenholtz, W.G., and Reis, S.T.: Chromate formation at the interface between a solid oxide fuel cell sealing glass and interconnect alloy. J. Power Sources 205, 301 (2012).CrossRefGoogle Scholar
Lin, C.K., Liu, Y.A., Wu, S.H., Liu, C.K., and Lee, R.Y.: Joint strength of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect in a reducing environment. J. Power Sources 280, 272 (2015).CrossRefGoogle Scholar
Mahapatra, M.K. and Lu, K.: Seal glass compatibility with bare and (Mn,Co)3O4 coated Crofer 22 APU alloy in different atmospheres. J. Power Sources 196, 700 (2011).CrossRefGoogle Scholar
Trebbels, R., Markus, T., and Singheiser, L.: Investigation of chromium vaporization from interconnector steels with spinel coatings. J. Electrochem. Soc. 157, B490 (2010).CrossRefGoogle Scholar
Kurokawa, H., Jacobson, C.P., DeJonghe, L.C., and Visco, S.J.: Chromium vaporization of bare and of coated iron-chromium alloys at 1073 K. Solid State Ionics 178, 287 (2007).CrossRefGoogle Scholar
Frandsen, H.L., Ramos, T., Faes, A., Pihlatie, M., and Brodersen, K.: Optimization of the strength of SOFC anode supports. J. Eur. Ceram. Soc. 32, 1041 (2012).CrossRefGoogle Scholar
Malzbender, J. and Zhao, Y.: Flexural strength and viscosity of glass ceramic sealants for solid oxide fuel cell stacks. Fuel Cells 12, 47 (2012).CrossRefGoogle Scholar
Khalili, A. and Kromp, K.: Statistical properties of Weibull estimators. J. Mater. Sci. 26, 6741 (1991).CrossRefGoogle Scholar
Charalambides, P.G., Lund, J., Evans, A.G., and McMeeking, R.M.: A test specimen for determining the fracture resistance of bimaterial interfaces. J. Appl. Mech. 56, 77 (1989).CrossRefGoogle Scholar
Hofinger, I., Oechsner, M., Bahr, H-A., and Swain, M.V.: Modified four-point bending specimen for determining the interface fracture energy for thin, brittle layers. Int. J. Fract. 92, 213 (1998).CrossRefGoogle Scholar
Malzbender, J., Steinbrech, R.W., and Singheiser, L.: Determination of the interfacial fracture energies of cathodes and glass ceramic sealants in a planar solid-oxide fuel cell design. J. Mater. Res. 18, 929 (2003).CrossRefGoogle Scholar
Chou, Y.S., Stevenson, J.W., and Singh, P.: Effect of aluminizing of Cr-containing ferritic alloys on the seal strength of a novel high-temperature solid oxide fuel cell sealing glass. J. Power Sources 185, 1001 (2008).CrossRefGoogle Scholar
Chou, Y.S., Stevenson, J.W., and Singh, P.: Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect. J. Power Sources 184, 238 (2008).CrossRefGoogle Scholar
Mahapatra, M.K. and Lu, K.: Glass-based seals for solid oxide fuel and electrolyzer cells—A review. Mater. Sci. Eng., R 67, 65 (2010).CrossRefGoogle Scholar
Choi, J.P., Chou, Y.S., and Stevenson, J.W.: Reactive air aluminization. PNNL No. October, 2011.Google Scholar
Kidner, N.J.: Alumilok Tm Coatings: Enhanced High Temperature Performance for Commercial Steels (White Paper). Nexceris LLC (Sep 23, 2015). White paper available at https://nexceris.com/wp-content/uploads/AlumiLok-Coatings-Enhanced-High-Temperature-Performance-for-Commercial-Steels.pdf; accessed 1/23/2019.Google Scholar
Bobruk, M., Molin, S., Chen, M., Brylewski, T., and Hendriksen, P.V.: Sintering of MnCo2O4 coatings prepared by electrophoretic deposition. Mater. Lett. 213, 394 (2018).CrossRefGoogle Scholar
Frandsen, H.L., Hendriksen, P.V., and Johansen, B.S.: A testing apparatus and a method of operating the same. IPC No. G01N3/18; G01N3/20. (Patent No. WO2014195304), 2014.Google Scholar
Frandsen, H.L., Curran, D.J., Rasmussen, S., and Hendriksen, P.V.: High throughput measurement of high temperature strength of ceramics in controlled atmosphere and its use on solid oxide fuel cell anode supports. J. Power Sources 258, 195 (2014).CrossRefGoogle Scholar
Evans, A.G., Drory, M.D., and Hu, M.S.: The cracking a decohesion of thin films. J. Mater. Res. 3, 1043 (1988).CrossRefGoogle Scholar
Hutchinson, J.W.: Mixed-mode cracking in layered materials. Adv. Appl. Mech. 29, 63 (1992).CrossRefGoogle Scholar
Akanda, S.R., Walter, M.E., Kidner, N.J., and Seabaugh, M.M.: Mechanical characterization of oxide coating-interconnect interfaces for solid oxide fuel cells. J. Power Sources 210, 254 (2012).CrossRefGoogle Scholar
Huczkowski, P., Christiansen, N., Shemet, V., Piron-Abellan, J., Singheiser, L., and Quadakkers, W.J.: Oxidation limited life times of chromia forming ferritic steels. Mater. Corros. 55, 825 (2004).CrossRefGoogle Scholar
Talic, B., Molin, S., Hendriksen, P.V., and Lein, H.L.: Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU. Corros. Sci. 138, 189 (2018).CrossRefGoogle Scholar
Fontana, S., Chevalier, S., and Caboche, G.: Metallic interconnects for solid oxide fuel cell: Performance of reactive element oxide coating during 10, 20, and 30 months exposure. Oxid. Met. 78, 307 (2012).CrossRefGoogle Scholar
Sørensen, B.F., Sarraute, S., Jørgensen, O., and Horsewell, A.: Thermally induced delamination of multilayers. Acta Mater. 46, 2603 (1998).CrossRefGoogle Scholar
Goutianos, S., Frandsen, H.L., and Sørensen, B.F.: Fracture properties of nickel-based anodes for solid oxide fuel cells. J. Eur. Ceram. Soc. 30, 3173 (2010).CrossRefGoogle Scholar
Kuhn, B., Wetzel, F.J., Malzbender, J., Steinbrech, R.W., and Singheiser, L.: Mechanical performance of reactive-air-brazed (RAB) ceramic/metal joints for solid oxide fuel cells at ambient temperature. J. Power Sources 193, 199 (2009).CrossRefGoogle Scholar
Malzbender, J., Steinbrech, R.W., and Singheiser, L.: Fracture energies of brittle sealants for planar solid oxide fuel cells. Ceram. Eng. Sci. Proc. 26, 239 (2005).Google Scholar
Kilinc, E. and Hand, R.J.: Mechanical properties of soda-lime-silica glasses with varying alkaline earth contents. J. Non-Cryst. Solids 429, 190 (2015).CrossRefGoogle Scholar
Saeki, I., Ohno, T., Seto, D., Sakai, O., Sugiyama, Y., Sato, T., Yamauchi, A., Kurokawa, K., Takeda, M., and Onishi, T.: Measurement of Young’s modulus of oxides at high temperature related to the oxidation study. Mater. High Temp. 28, 264 (2014).CrossRefGoogle Scholar
Liu, W.N., Sun, X., Stephens, E., and Khaleel, M.A.: Life prediction of coated and uncoated metallic interconnect for solid oxide fuel cell applications. J. Power Sources 189, 1044 (2009).CrossRefGoogle Scholar