Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:34:55.664Z Has data issue: false hasContentIssue false

Improving plasticity and toughness of Cu-Zr-Y-Al bulk metallic glasses via compositional tuning towards the CuZr

Published online by Cambridge University Press:  31 January 2011

Jian Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, we propose a simple approach for designing plastic bulk metallic glasses (BMGs) by exploiting the ductility of intermetallic compounds involved in the BMG-forming system. Its validity was examined by investigating a series of quaternary Cu-Zr-Y-Al alloys along the composition tie-line between Cu42Zr44.4Y3.6Al10 (Y1) and the B2 CuZr phase, expressed as (Cu0.5Zr0.5)x(M)100-x (M = Zr0.15Y0.225Al0.625, 84≤x≤93). When tuning the composition towards the CuZr, the glass-forming ability of alloys is dramatically degraded, showing a reduction of critical diameter Dc for BMG formation from 16 mm at x = 84 (Y1) to 2 mm at x = 93. As the composition of BMGs shifts to the CuZr terminal, the shear modulus μ of the BMGs decreases, whereas the Poisson's ratio ν increases. With respect to the Y1 BMG, compressive plasticity and toughness of the Y2 BMG (x = 92, Dc = 4 mm) with a higher concentration of the CuZr are improved, which is consistent with its lower μ and higher ν values.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Conner, R.D., Johnson, W.L.Composition dependent ductility in the amorphous Zr-Ti-Ni-Cu-Be alloy system. Scr. Mater. 55, 645 (2006)CrossRefGoogle Scholar
2.Liu, Y.H., Wang, G., Wang, R.J., Zhao, D.Q., Pan, M.X., Wang, W.H.Super plastic bulk metallic glasses at room temperature. Science 315, 1385 (2007)CrossRefGoogle ScholarPubMed
3.Kumar, G., Ohkubo, T., Mukai, T., Hono, K.Plasticity and microstructure of Zr-Cu-Al bulk metallic glasses. Scr. Mater. 57, 173 (2007)CrossRefGoogle Scholar
4.Zhang, L., Cheng, Y.Q., Cao, A.J., Xu, J., Ma, E.Bulk metallic glasses with large plasticity: Composition design from the structural perspective. Acta Mater. 57, 1154 (2009)CrossRefGoogle Scholar
5.Schroers, J., Johnson, W.L.Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004)CrossRefGoogle ScholarPubMed
6.Lewandowski, J.J., Wang, W.H., Greer, A.L.Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85, 77 (2005)CrossRefGoogle Scholar
7.Gu, X.J., Mcdermott, A.G., Poon, S.J., Shiflet, G.J.Critical Poisson's ratio for plasticity in Fe-Mo-C-B-Ln bulk amorphous steel. Appl. Phys. Lett. 88, 211905 (2006)CrossRefGoogle Scholar
8.Poon, S.J., Zhu, A., Shiflet, G.J.Poisson's ratio and intrinsic plasticity of metallic glasses. Appl. Phys. Lett. 92, 261902 (2008)CrossRefGoogle Scholar
9.Johnson, W.L., Samwer, K.A universal criterion for plastic yielding of metallic glasses with a (T/T g)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005)CrossRefGoogle ScholarPubMed
10.Cheng, Y.Q., Cao, A.J., Ma, E.Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Mater. 57, 3253 (2009)CrossRefGoogle Scholar
11.Zhang, Y., Greer, A.L.Correlations for predicting plasticity or brittleness of metallic glasses. J. Alloys Compd. 434–435, 2 (2007)CrossRefGoogle Scholar
12.Panissod, P., Guerra, D.A., Amamou, A., Durand, J., Johnson, W.L., Carter, W.L., Poon, S.J.Local symmetry around the glass-former sites in amorphous metallic alloys through electric quadrupole effects. Phys. Rev. Lett. 44, 1465 (1980)CrossRefGoogle Scholar
13.Eifert, H.J., Elschner, B., Buschow, K.H.J.Density of states, compositional short-range order, and stability of amorphous ZrxCu1-x alloys. Phys. Rev. B: Condens. Matter 25, 7441 (1982)CrossRefGoogle Scholar
14.Russell, A.M.Ductility in intermetallic compounds. Adv. Eng. Mater. 5, 629 (2003)CrossRefGoogle Scholar
15.Gschneidner, K., Russell, A., Pecharsky, A., Morris, J., Zhang, Z., Lograsso, T., Hsu, D., Lo, C.H.C., Ye, Y., Slager, A., Kesse, D.A family of ductile intermetallic compounds. Nat. Mater. 2, 587 (2003)CrossRefGoogle ScholarPubMed
16.Wollmershauser, J.A., Kabra, S., Agnew, S.R.In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg. Acta Mater. 57, 213 (2009)CrossRefGoogle Scholar
17.Wang, W.H., Lewandowski, J.J., Greer, A.L.Understanding the glass-forming ability of Cu50Zr50 alloys in terms of a metastable eutectic. J. Mater. Res. 20, 2307 (2005)CrossRefGoogle Scholar
18.Dai, C.L., Guo, H., Li, Y., Xu, J.A new composition zone of bulk metallic glass formation in the Cu-Zr-Ti ternary system and its correlation with the eutectic reaction. J. Non-Cryst. Solids 354, 3659 (2008)CrossRefGoogle Scholar
19.Li, Y., Guo, Q., Kalb, J.A., Thompson, C.V.Matching glass-forming ability with the density of the amorphous phase. Science 322, 1816 (2008)CrossRefGoogle ScholarPubMed
20.Duan, G., Blauwe, K.D., Lind, M.L., Schramm, J.P., Johnson, W.L.Compositional dependence of thermal, elastic, and mechanical properties in Cu-Zr-Ag bulk metallic glasses. Scr. Mater. 58, 159 (2008)CrossRefGoogle Scholar
21.Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., Eckert, J.Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 (2006)CrossRefGoogle Scholar
22.Xu, D.H., Duan, G., Johnson, W.L.Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 245504 (2004)CrossRefGoogle ScholarPubMed
23.Shen, Y., Ma, E., Xu, J.A group of Cu(Zr)-based BMGs with critical diameter in the range of 12 to 18 mm. J. Mater. Sci. Technol. 24, 149 (2008)Google Scholar
24.Murakami, Y.Stress Intensity Factors Handbook Vol. 2 (Pergamon, OxfordUK 1987)666Google Scholar
25.Lewandowski, J.J., Gu, X.J., Nouri, A.S., Poon, S.J., Shiflet, G.J.Tough Fe-based bulk metallic glasses. Appl. Phys. Lett. 92, 091918 (2008)CrossRefGoogle Scholar
26.Jia, P., Zhu, Z.D., Ma, E., Xu, J.Notch toughness of Cu-based bulk metallic glasses. Scr. Mater. 61, 137 (2009)CrossRefGoogle Scholar
27.Demetriou, M.D., Kaltenboeck, G., Suh, J.Y., Garrett, G., Floyd, M., Crewdson, C., Hofmann, D.C., Kozachkov, H., Wiest, A., Schramm, J.P., Johnson, W.L.Glassy steel optimized for glass-forming ability and toughness. Appl. Phys. Lett. 95, 041907 (2009)CrossRefGoogle Scholar
28.Song, S.X., Bei, H., Wadsworth, J., Nieh, T.G.Flow serration in a Zr-based bulk metallic glass in compression at low strain rates. Intermetallics 16, 813 (2008)CrossRefGoogle Scholar
29.Han, Z., Wu, W.F., Li, Y., Wei, Y.J., Gao, H.J.An instability index of shear band for plasticity in metallic glasses. Acta Mater. 57, 1367 (2009)CrossRefGoogle Scholar
30.Chen, H.S.Plastic flow in metallic glasses under compression. Scr. Metall. 7, 931 (1973)CrossRefGoogle Scholar
31.Xie, S., George, E.P.Size-dependent plasticity and fracture of a metallic glass in compression. Intermetallics 16, 485 (2008)CrossRefGoogle Scholar
32.Wu, W.F., Li, Y., Schuh, C.A.Strength, plasticity and brittleness of bulk metallic glasses under compression: Statistical and geometric effects. Philos. Mag. 88, 71 (2008)CrossRefGoogle Scholar
33.Wang, Y.L., Ma, E., Xu, J.Bulk metallic glass formation near the TiCu-TiNi pseudo-binary eutectic composition. Philos. Mag. Lett. 88, 319 (2008)CrossRefGoogle Scholar
34.Das, J., Kim, K.B., Xu, W., Wei, B.C., Zhang, Z.F., Wang, W.H., Yi, S., Eckert, J.Ductile metallic glasses in supercooled martensitic alloys. Mater. Trans. 47, 2606 (2006)CrossRefGoogle Scholar