Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T08:54:49.992Z Has data issue: false hasContentIssue false

Improvement of resistance to corrosion of stainless steel 304 in acid solutions by simultaneous deposition with doping of Si using KrF excimer laser

Published online by Cambridge University Press:  31 January 2011

Koji Sugioka
Affiliation:
Riken, the Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan
Hideo Tashiro
Affiliation:
Riken, the Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan
Koichi Toyoda
Affiliation:
Riken, the Institute of Physical and Chemical Research, Wako, Saitama 351-01, Japan
Hideyuki Murakami
Affiliation:
Tokyo Denki University, Faculty of Engineering, 2-2, Kanda-Nishi-Cho, Chiyoda-ku, Tokyo, 101 Japan
Hiroshi Takai
Affiliation:
Tokyo Denki University, Faculty of Engineering, 2-2, Kanda-Nishi-Cho, Chiyoda-ku, Tokyo, 101 Japan
Get access

Abstract

The chemical stability of the surface of stainless steel (SUS) 304 in acid immersion tests is greatly improved by the laser implant-deposition (LID) process, i.e., the simultaneous deposition and incorporation of silicon by KrF excimer laser irradiation. The etching depths of the treated samples in 1.32 N HCl solution are substantially zero at the laser irradiation conditions of more than 40 pulses and of more than 400 mJ/cm2 at the surface. By the quantitative verification of cathodic polarization in 1 N H2SO4, the highest polarization resistance is estimated to be 26.7 times that of the nontreated sample.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Gnamuthu, D. S., Proc. of Conf. ASM'79 on Application of Lasers in Materials Processing, 177 (1979).Google Scholar
2Ogale, S. B., Polman, A., Quentin, F. O. P., Roorda, S., and Saris, F. W., Appl. Phys. Lett. 50, 138 (1987).CrossRefGoogle Scholar
3Ogale, S. B., Patil, P. P., Roorda, S., and Saris, F. W., Appl. Phys. Lett. 50, 1802 (1988).CrossRefGoogle Scholar
4Jeris, T. R., Nastasi, M., Zocco, T. G., and Martin, J. A., Appl. Phys. Lett. 53, 75 (1988).CrossRefGoogle Scholar
5Sugioka, K., Tashiro, H., Toyoda, K., Tamura, E., and Nagasaka, K., J. Mater. Res. 5, 265 (1990).CrossRefGoogle Scholar
6Goode, P. D. and Baumvol, I. J. R., Nucl. Instrum. Methods 189, 161 (1981).CrossRefGoogle Scholar
7Hubler, G. K. and Smidt, F. A., Nucl. Instrum. Methods B7/8, 151 (1985).Google Scholar
8Doyle, B. L., Follstaedt, D. M., Picraux, S. T., Yost, F. G., Pope, L. E., and Knapp, J. A., Nucl. Instrum. Methods B7/8, 166 (1985).CrossRefGoogle Scholar
9Peide, Z., Xianghuai, L., Zhijie, W., Wei, T., and Shichang, Z., Nucl. Instrum. Methods B7/8, 195 (1985).Google Scholar
10Cui, F. Z., Vredenberg, A. M., and Saris, F. W., Appl. Phys. Lett. 53, 2152 (1988).Google Scholar
11Sundgren, J. E., Thin Solid Films 63, 367 (1983).Google Scholar
12Giacobbe, F. W., in Photon, Beam, and Plasma Stimulated Chemical Processes at Surfaces, edited by Donnelly, V. M., Herman, I. P., and Hirose, M. (Mater. Res. Soc. Symp. Proc. 75, Pittsburgh, PA, 1987), p. 809.Google Scholar
13Lince, J. R., J. Mater. Res. 5, 218 (1990).CrossRefGoogle Scholar
14Itzhak, D., Tuler, F. R., and Schieber, M., Thin Solid Films 93, 379 (1980).Google Scholar
15Wahl, G., Schmaderer, F., and Thiede, W., Thin Solid Films 94, 257 (1982).CrossRefGoogle Scholar
16Cabrera, A. L., Kirner, J. F., and Pierantozzi, R., J. Mater. Res. 5, 74 (1990).CrossRefGoogle Scholar
17Grunling, H. W. and Bauer, R., Thin Solid Films 95, 3 (1982).Google Scholar
18Itoh, T. and Ohtsuka, R., Proc. of the 19th Riken Symp. on Ion Implantation and Submicron Fabrication, 5 (1988).Google Scholar
19Bäuerle, D., Irsigler, P., Leyendecker, G., Noll, H., and Wagner, D., Appl. Phys. Lett. 40, 819 (1982).CrossRefGoogle Scholar
20Mishima, Y., Hirose, M., Osaka, Y., Nagamine, K., Ashido, Y., Kitagawa, N., and Isogaya, K., Jpn. J. Appl. Phys. 22, L46 (1983).Google Scholar
21Sugioka, K., Tashiro, H., Toyoda, K., Murakami, H., and Takai, H., Jpn. J. Appl. Phys. Lett. 29, L1185 (1990).Google Scholar
22Sugioka, K. and Toyoda, K., Jpn. J. Appl. Phys. 28, 2162 (1989).Google Scholar
23Sugioka, K., Toyoda, K., Tachi, K., and Otsuka, M., Appl. Phys. A49, 723 (1989).Google Scholar
24Wagner, C. and Traund, W., Z. Electrochem. 44, 391 (1938).Google Scholar
25Stern, M. and Geary, A. L., J. Electrochem. Soc. 104, 56 (1957).Google Scholar
26Stern, M., Corrosion 14, 440t (1958).Google Scholar