Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T09:04:31.491Z Has data issue: false hasContentIssue false

Improvement of physico-chemical properties by addition of H2O2: An extensive case study on the RE-doped ceria system (RE = Gd, Sm)

Published online by Cambridge University Press:  31 January 2011

Avesh K. Tyagi*
Affiliation:
Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Effect of H2O2 on synthesis and powder properties such as surface area and agglomerate size of nanocrystalline Ce0.8M0.2O1.90 (M: Sm, Gd) was explored by treating cerium nitrate and rare-earth nitrate with NaOH in the presence/absence of H2O2. The resultant products were characterized by x-ray diffraction, Raman spectroscopy, thermo-gravimetry–differential thermal analysis, dynamic light scattering, surface area analysis, high-resolution transmission electron microscopy, and x-ray photoelectron spectroscopy. The presence of H2O2 was found to have a profound effect on powder properties such as surface area and particle size of these doped ceria samples and results in smaller crystallite size, softer agglomerates, and larger surface area. A mechanism is proposed to explain the observed better powder properties of the samples. It was also shown that the samples prepared in the presence of H2O2 can lower the conversion temperature of CO to CO2, proving these to be better catalysts. Interestingly, temperature-programmed reduction studies on Sm3+-doped samples showed that the doping in conjunction with the use of H2O2 leads to enhanced reduction properties of the samples over multiple cycles.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Park, S.J., Vohs, J.M. and Gorte, R.J.: Direct oxidation of hydro-carbons in a solid-oxide fuel cell. Nature 265, 404 (2000).Google Scholar
2Murray, E.P., Tsai, T. and Barnett, A.: A direct-methane fuel cell with a ceria-based anode. Nature 400, 649 (1999).CrossRefGoogle Scholar
3Maki, Y., Matsuda, M. and Kudo, T.: U.S. Patent No. 3 [607] 424, (1971).Google Scholar
4Kharton, V.V., Figueiredo, F.M., Navarro, L., Naumovich, E.N., Kovalevsky, A.V., Yaremchenko, A.A., Viskup, A.P., Carneiro, A., Marques, F.M.B. and Frade, J.R.: Ceria-based materials for solid oxide fuel cells. J. Mater. Sci. 36, 1105 (2001).CrossRefGoogle Scholar
5Tok, A.I.Y., Luo, L.H., Boey, F.Y.C. and Ng, S.H.: Consolidation and properties of Gd0.1Ce0.9O1.95 nanoparticles for solid oxide fuel cell electrolytes. J. Mater. Res. 21, 19 (2006).CrossRefGoogle Scholar
6Izu, N., Shin, W. and Murayama, N.: Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder. Sens. Actuators, B 93, 449 (2003).CrossRefGoogle Scholar
7Kirk, N.B. and Wood, J.V.: Glass polishing. Br. Ceram. Trans. 93, 25 (1994).Google Scholar
8Yin, X., Hong, L. and Liu, Z-L.: Development of oxygen transport membrane La0.2Sr0.8CoO3d/Ce0.8Gd0.2O2d on the tubular CeO2support. Appl. Catal., A 300, 75 (2006).CrossRefGoogle Scholar
9Yin, X., Hong, L. and Liu, Z-L.: Oxygen permeation through the LSCO-80/CeO2 asymmetric tubular membrane reactor. J. Membr. Sci. 268, 2 (2006)CrossRefGoogle Scholar
10Damayanova, S. and Bueno, J.M.C.: Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts. Appl. Catal., A 253, 135 (2003).CrossRefGoogle Scholar
11Yao, Y.F. and Kummer, J.T.: Low-concentration supported precious metal catalysts prepared by thermal transport. J. Catal. 106, 307 (1987).CrossRefGoogle Scholar
12Su, E.C., Montreuil, C.N. and Rothschild, W.G.: Oxygen storage capacity of monolith three-way catalysts. Appl. Catal. 17, 75 (1985).CrossRefGoogle Scholar
13Imamura, S., Fukuda, I. and Ishida, S.: Wet oxidation catalyzed by ruthenium supported on cerium (IV) oxides. Ind. Eng. Chem. Res. 27, 718 (1988).CrossRefGoogle Scholar
14Mishra, V.S., Mahajani, V.V. and Joshi, J.B.: Wet air oxidation. Ind. Eng. Chem. Res. 34, 2 (1995).CrossRefGoogle Scholar
15Trovarelli, A., Leittenburg, C. de, Boaro, M. and Dolcetti, G.: Redox chemistry over CeO2-based catalysts: SO2 reduction by CO or CH4. Catal. Today 50, 381 (1999).Google Scholar
16Zhao, S. and Gorte, R.K.: A comparison of ceria and Sm-doped ceria for hydrocarbon oxidation reactions. Appl. Catal., A 277, 129 (2004).CrossRefGoogle Scholar
17Kawi, S., Tang, Y.P., Hidajat, K. and Yu, L.E.: Synthesis and characterization of nanoscale CeO2 catalyst for deNOx. J. Meta-stable Nanocryst. Mater. 23, 95 (2005).Google Scholar
18Neylon, M.K., Castagonla, M.J., Castagonla, N.B. and Marshall, C.L.: Coated bifunctional catalysts for NOx SCR with C3H6: Part I: Water-enhanced activity. Catal. Today 96, 53 (2004).CrossRefGoogle Scholar
19Colon, G., Navio, J.A., Monaci, R. and Ferino, I.: CeO2–La2O3catalytic system Part I. Preparation and characterisation of catalysts. Phys. Chem. Chem. Phys. 2, 4453 (2000).CrossRefGoogle Scholar
20Krishna, K., Bueno-Lopez, A., Makkee, M. and Moulijn, J.A.: Potential rare earth modified CeO2 catalysts for soot oxidation. I. Characterisation and catalytic activity with O2. Appl. Catal. B 75, 189 (2007).CrossRefGoogle Scholar
21Hennings, U. and Reimert, R.: Noble metal catalysts supported on gadolinium doped ceria used for natural gas reforming in fuel-cell applications. Appl. Catal. B 70, 498 (2007).CrossRefGoogle Scholar
22Liu, F.X., Wang, C.Y., Su, Q.D., Zhao, T.P. and Zhao, G.W.: Optical properties of nanocrystalline ceria. Appl. Opt. 36, 2796 (1997).Google Scholar
23Chiang, Y.M., Lavik, E.B. and Blom, D.A.: Defect thermodynamics and electrical properties of nanocrystalline oxides: Pure and doped CeO2. Nanostruct. Mater. 9, 633 (1997).CrossRefGoogle Scholar
24Yanchun, Z. and Rahaman, M.N.: Effect of redox reaction on the sintering behavior of cerium oxide. Acta Mater. 45, 3635 (1997).Google Scholar
25Tschope, A., Schaadt, D., Birringer, R. and Ying, J.Y.: Catalytic properties of nanostructured metal oxides synthesized by inert gas condensation. Nanostruct. Mater. 9, 423 (1997).CrossRefGoogle Scholar
26Laberty-Robert, C., Long, J.W., Lucas, E.M., Pettigrew, K.A., Stroud, R.M., Doescher, M.S. and Rolison, D.R.: Sol-gel-derived ceria nanoarchitectures: Synthesis, characterization, and electrical properties. Chem. Mater. 18, 50 (2006).CrossRefGoogle Scholar
27Deganello, F., Esposito, V., Miyayama, M. and Traversa, E.: Cathode performance of nanostructured La1-aSraCo1-bFebO3-x on a Ce0.8Sm0.2O2 electrolyte prepared by citrate-nitrate autocombustion. J. Electrochem. Soc. 154, A89 (2007).CrossRefGoogle Scholar
28Wesolowski, D.E. and Cima, M.J.: Nitrate-based metalorganic decomposition of CeO2 on yttria-stabilised zirconia. J. Mater. Res. 21, 1 (2006).CrossRefGoogle Scholar
29Deganello, F., Lotta, L.F., Longo, A., Casaletto, M.P. and Scopelitti, M.: Cerium effect on the phase structure, phase stability and redox properties of Ce-doped strontium ferrates. J. Solid State Chem. 179, 3406 (2006).CrossRefGoogle Scholar
30Yu, J.C., Zhang, L.Z. and Lin, J.: Direct sonochemical preparation of high surface area nanoporous ceria and ceria–zirconia solid solutions. J. Colloid Interface Sci. 260, 240 (2003).CrossRefGoogle ScholarPubMed
31Tsuzuki, T. and McCormick, P.G.: Synthesis of ultrafine ceria powders by mechanochemical processing. J. Am. Ceram. Soc. 84, 1453 (2001).CrossRefGoogle Scholar
32Xu, H.R., Gao, L., Gu, H.C., Guo, J.K. and Yan, D.S.: Synthesis of solid, spherical CeO2 particles prepared by the spray hydrolysis reaction method. J. Am. Ceram. Soc. 85, 39 (2002).CrossRefGoogle Scholar
33Chen, P.L. and Chen, I.W.: Reactive cerium(IV). Oxide powders by the homogeneous precipitation method. J. Am. Ceram. Soc. 76, 1577 (1993).CrossRefGoogle Scholar
34Chen, H.I. and Chang, H.Y.: Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloids Surf., A 242, 61 (2004).CrossRefGoogle Scholar
35Ozawa, M.: Effect of aging temperature on CeO2 formation in homogeneous precipitation. J. Mater. Sci. 39, 4035 (2004).CrossRefGoogle Scholar
36Woodhead, J.L.: Process for preparing aqueous dispersion of ceria and resulting product. U.S. Patent No. 4231893, November 4, 1980.Google Scholar
37Djuricic, B. and Pickering, S.: Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders. J. Eur. Ceram. Soc. 19, 1925 (1999).CrossRefGoogle Scholar
38Lee, J.S. and Choi, S.C.: Crystallization behavior of nano-ceria powders by hydrothermal synthesis using a mixture of H2O2 and NH4OH. Mater. Lett. 58, 390 (2004).CrossRefGoogle Scholar
39Mandal, B.P., Grover, V. and Tyagi, A.K.: Phase relations, lattice thermal expansion in Ce1-xEuxO2-x/2 and Ce1-xSmxO2-x/2 systems and stabilization of cubic RE2O3 (RE: Eu, Sm). Mater. Sci. Eng., A 430, 120 (2006).CrossRefGoogle Scholar
40Grover, V. and Tyagi, A.K.: Phase relations, lattice thermal expansion in CeO2-Gd2O3 system, and stabilization of cubic gadolinia. Mater. Res. Bull. 39, 859 (2004).CrossRefGoogle Scholar
41Scholes, F.H., Hughes, A.E., Hardin, S.G., Lynch, P. and Miller, P.R.: Influence of hydrogen peroxide in the preparation of nanocrystalline ceria. Chem. Mater. 19, 2321 (2007).CrossRefGoogle Scholar
42Moeller, T.: The Chemistry of Lanthanides (Pergamon Press, Oxford, 1973).Google Scholar
43Mandal, B.P., Grover, V., Roy, M. and Tyagi, A.K.: X-ray diffraction and Raman spectroscopic investigation on the phase relations in Yb2O3- and Tm2O 3-substituted CeO2. J. Am. Ceram. Soc. 90, 2961 (2007).CrossRefGoogle Scholar
44Mandal, B.P., Roy, M., Grover, V. and Tyagi, A.K.: X-ray diffraction, m-Raman spectroscopic studies on CeO2-RE2O3 (RE=Ho, Er) systems: Observation of parasitic phases. J. Appl. Phys. 103, 033506 (2008).CrossRefGoogle Scholar
45Nakajima, A., Yoshihara, A. and Ishigame, M.: Defect-induced Raman spectra in doped CeO2. Phys. Rev. B 50, 13297 (1994).CrossRefGoogle ScholarPubMed
46Weber, W.H., Hass, K.C. and McBride, J.R.: Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 48, 178 (1993).CrossRefGoogle ScholarPubMed
47Zhang, F., Chan, W.S., Spanier, J.E., Apak, E., Jin, Q., Robinson, R.D. and Herman, I.P.: Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127 (2002).CrossRefGoogle Scholar
48Williams, Q.: Mineral Physics and Crystallography: A Handbook of Physical Constants (American Geophysical Union, Washington, DC, 1995).Google Scholar
49Guzman, J., Carrettin, S. and Corma, A.: Spectroscopic evidence for the supply of reactive oxygen during CO oxidation catalyzed by gold supported on nanocrystalline CeO2. J. Am. Chem. Soc. 17, 3286 (2005).CrossRefGoogle Scholar
50Pushkarev, V.V., Kovalchuk, V.I. and d'Itri, J.L.: Probing defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B 108, 5341 (2004).CrossRefGoogle Scholar
51Simaan, A.J., Dopner, S., Banse, F., Bourcier, S., Bouchoux, G., Boussac, A., Hildebrandt, P. and Girerd, J.: FeIII-hydroperoxo and peroxo complexes with aminopyridyl ligands and the resonance raman spectroscopic identification of the Fe-O and O-O stretching modes. Eur. J. Inorg. Chem. 1627 (2000).Google Scholar
52Giguere, P.A. and Srinivasan, T.K.K.: Raman study of matrix isolated H2O2 and D2O2. Chem. Phys. Lett. 33, 479 (1975).CrossRefGoogle Scholar
53Banerjee, S., Devi, P.S., Topwal, D., Mandal, S. and Menon, K.: Enhanced ionic conductivity in Ce0.8Sm0.2O1.9: Unique effect of calcium Co-doping. Adv. Funct. Mater. 17, 2847 (2007).CrossRefGoogle Scholar
54Hughes, A.E., Taylor, R.J., Hinton, B.R.W. and Wilson, L.: XPS and SEM characterization of hydrated cerium oxide conversion coatings. Surf. Interface Anal. 23, 540 (1995).CrossRefGoogle Scholar
55Giordano, F., Trovarelli, A., Leitenburg, C. de and Giona, M.: A model for the temperature-programmed reduction of low and high surface area ceria. J. Catal. 193, 273 (2000).CrossRefGoogle Scholar
56He, H., Dai, H. and Au, C.T.: Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal. Today 90, 245 (2004).CrossRefGoogle Scholar
57Pijolat, M., Prin, M. and Soustelle, M.: Thermal stability of doped ceria: Experiment and modeling. J. Chem. Soc. Faraday Trans. 91, 3941 (1995).CrossRefGoogle Scholar