Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-07T15:12:50.409Z Has data issue: false hasContentIssue false

Importance of surface preparation on the nano-indentation stress-strain curves measured in metals

Published online by Cambridge University Press:  31 January 2011

Siddhartha Pathak
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Dejan Stojakovic
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Roger Doherty
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
Surya R. Kalidindi*
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, we investigated experimentally the various factors influencing the extraction of indentation stress-strain curves from spherical nanoindentation on metal samples using two different tip radii. In particular, we focused on the effects of (i) the surface preparation techniques used, (ii) the presence of a surface oxide layer, and (iii) the occurrence of pop-ins at the elastic-plastic transition on our newly developed data analysis methods for extracting reliable indentation stress-strain curves. Rough mechanical polishing was shown to introduce a large scatter in the measured indentation yield strengths, whereas electropolishing or vibropolishing produced consistent results reflective of the pristine sample. The data analysis techniques used were able to discard the portions of the raw data affected by a thin oxide layer, present on most metal surfaces, and yield reasonable indentation stress-strain curves. Experiments with different indenter tip radii on annealed and cold-worked samples indicated that pop-ins are caused by delayed nucleation of dislocations in the sample under the indenter.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, UK, 1951).Google Scholar
2.Schuh, C.A.: Nanoindentation studies of materials. Mater. Today 9, 32 (2006).CrossRefGoogle Scholar
3.Fischer-Cripps, A.C.: Review of analysis methods for sub-micron indentation testing. Vacuum 58, 569 (2000).CrossRefGoogle Scholar
4.Fischer-Cripps, A.C.: Nanoindentation, 2nd ed. (Springer, New York, 2004).CrossRefGoogle Scholar
5.Oliver, W.C. and Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
6.Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
7.Pharr, G.M. and Bolshakov, A.: Understanding nanoindentation unloading curves. J. Mater. Res. 17(10), 2260 (2002).CrossRefGoogle Scholar
8.Basu, S., Moseson, A., and Barsoum, M.W.: On the determination of spherical nanoindentation stress-strain curves. J. Mater. Res. 21, 2628 (2006).CrossRefGoogle Scholar
9.Field, J.S. and Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8, 297 (1993).CrossRefGoogle Scholar
10.Field, J.S. and Swain, M.V.: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).CrossRefGoogle Scholar
11.Swain, M.V.: Mechanical property characterization of small volumes of brittle materials with spherical tipped indenters. Mater. Sci. Eng., A 253, 160 (1998).CrossRefGoogle Scholar
12.Murugaiah, A., Barsoum, M.W., Kalidindi, S.R., and Zhen, T.: Spherical nanoindentations and kink bands in Ti3SiC2. J. Mater. Res. 19, 1139 (2004).CrossRefGoogle Scholar
13.He, L.H., Fujisawa, N., and Swain, M.V.: Elastic modulus and stress-strain response of human enamel by nano-indentation. Bio-mater. 27, 4388 (2006).Google ScholarPubMed
14.Taljat, B., Zacharia, T., and Kosel, F.: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 35, 4411 (1998).CrossRefGoogle Scholar
15.Beghini, M., Bertini, L., and Fontanari, V.: Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441 (2006).CrossRefGoogle Scholar
16.Michler, J., Stauss, S., Schwaller, P., Bucaille, J-L., and Felder, E.: Determining the stress-strain behavior at micro- and nanometer scales by coupling nanoindentation to numerical simulation. EMPA (Swiss Federal Laboratories for Materials Testing and Research) Publication 6 (2002).Google Scholar
17.Stauss, S., Schwaller, P., Bucaille, J.L., Rabe, R., Rohr, L., Michler, J., and Blank, E.: Determining the stress-strain behavior of small devices by nanoindentation in combination with inverse methods, in Proceedings of the 28th International Conference on MNE (Elsevier, New York, 2003), p. 818.Google Scholar
18.Pelletier, H.: Predictive model to estimate the stress-strain curves of bulk metals using nanoindentation. Tribol. Int. 39, 593 (2006).CrossRefGoogle Scholar
19.Kalidindi, S.R. and Pathak, S.: Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56, 3523 (2008).CrossRefGoogle Scholar
20.Pathak, S., Kalidindi, S.R., Klemenz, C., and Orlovskaya, N.: Analyzing indentation stress-strain response of LaGaO3 single crystals using spherical indenters. J. Eur. Ceram. Soc. 28, 2213 (2008).CrossRefGoogle Scholar
21.Pathak, S., Stojakovic, D., and Kalidindi, S.R.: Measurement of the local mechanical properties in polycrystalline samples using spherical nano-indentation and orientation imaging microscopy. Acta Mater. (2008, submitted).CrossRefGoogle Scholar
22.Hertz, H.: Miscellaneous Papers (MacMillan and Co. Ltd., New York, 1896).Google Scholar
23.Love, A.E.H.: Boussinesq's problem for a rigid cone. J. Math. 10, 161 (1939).Google Scholar
24.Mencik, J. and Swain, M.V.: Errors associated with depth-sensing microindentation tests. J. Mater. Res. 10, 1491 (1995).CrossRefGoogle Scholar
25.Pathak, S., Kalidindi, S.R., Moser, B., Klemenz, C., and Orlovskaya, N.: Analyzing indentation behavior of LaGaO3 single crystals using sharp indenters. J. Eur. Ceram. Soc. 28, 2039 (2008).CrossRefGoogle Scholar
26.Barsoum, M.W., Zhen, T., Kalidindi, S.R., Radovic, M., and Murugaiah, A.: Fully reversible, dislocation-based compressive deformation of Ti3SiC2 to 1 GPa. Nat. Mater. 2, 107 (2003).CrossRefGoogle ScholarPubMed
27.Petzow, G.: Metallographic Etching: Techniques for Metallotra-phy, Ceramography, Plastography, 2nd ed. (ASM International, New York, 1999).Google Scholar
28.Handbook, A.S.M., Vol. 9: Metallography and Microstructures (ASM International, 2004).Google Scholar
29.Asif, S.A.S. and Pethica, J.B.: Nanoindentation creep of single-crystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).CrossRefGoogle Scholar
30.Bahr, D.F., Kramer, D.E., and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).CrossRefGoogle Scholar
31.Hill, N.A. and Jones, J.W.S.: The crystallographic dependence of low-load indentation hardness in beryllium. J. Nucl. Mater. 3, 137 (1961).CrossRefGoogle Scholar
32.Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties, 2nd ed. (The MIT Press, Boston, MA, 1971).Google Scholar
33.Venkataraman, S.K., Kohlstedt, D.L., and Gerberich, W.W.: Continuous microindentation of passivating surfaces. J. Mater. Res. 8, 685 (1993).CrossRefGoogle Scholar
34.Vlassak, J.J. and Nix, W.D.: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67, 1045 (1993).CrossRefGoogle Scholar
35.Timoshenko, S.P. and Goodier, J.N.: Theory of Elasticity, 3rd ed. (McGraw Hill Higher Education, New York, 1970).Google Scholar
36.Smithells Metals Reference Book, 8th ed. (Butterworth-Heinemann, Oxford, UK, 2004).Google Scholar
37.Gane, N. and Bowden, F.P.: Microdeformation of solids. J. Appl. Phys. 39, 1432 (1968).CrossRefGoogle Scholar
38.Pethica, J.B. and Tabor, D.: Contact of characterised metal surfaces at very low loads: Deformation and adhesion. Surf. Sci. 89, 182 (1979).CrossRefGoogle Scholar
39.Corcoran, S.G., Colton, R.J., Lilleodden, E.T., and Gerberich, W. W.: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B: Condens. Matter 55, 16057 (1997).CrossRefGoogle Scholar
40.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., and Wyrobek, J.T.: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).CrossRefGoogle Scholar
41.Gerberich, W.W., Venkataraman, S., Nelson, J., Huang, H., Lilleodden, E., and Bonin, W.: Yield point phenomena and dislocation velocities underneath indentations into BCC crystals: in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Borgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 629.Google Scholar
42.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E., and Kohlstedt, D.L.: Injection of plasticity by millinewton contacts. Acta Metall. Mater. 43, 1569 (1995).CrossRefGoogle Scholar
43.Gouldstone, A., Koh, H.J., Zeng, K.Y., Giannakopoulos, A.E., and Suresh, S.: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).CrossRefGoogle Scholar
44.Harvey, S., Huang, H., Venkataraman, S., and Gerberich, W.W.: Microscopy and microindentation mechanics of single crystal Fe-3 wt%Si: Part I. Atomic force microscopy of a small indentation. J. Mater. Res. 8, 1291 (1993).CrossRefGoogle Scholar
45.Lilleodden, E.T., Bonin, W., Nelson, J., Wyrobek, J.T., and Gerberich, W.W.: In situ imaging of μN load indents into GaAs. J. Mater. Res. 10, 2162 (1995).CrossRefGoogle Scholar
46.Mann, A.B., Pethica, J.B., Nix, W.D., and Tomiya, S.: Nanoindentation of epitaxial films: A study of pop-in events, in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Ross, C.A., Townsend, P.H., Volkert, C.A., and Borgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 271.Google Scholar
47.Maugis, D., Desalos-Andarelli, G., Heurtel, A., and Courtel, R.: Adhesion and friction on Al thin foils related to observed dislocation density. ASLE Trans. 21, 1 (1978).CrossRefGoogle Scholar
48.Michalske, T.A. and Houston, J.E.: Dislocation nucleation at nano-scale mechanical contacts. Acta Mater. 46, 391 (1998).CrossRefGoogle Scholar
49.Suresh, S., Nieh, T.G., and Choi, B.W.: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951 (1999).CrossRefGoogle Scholar
50.Tangyunyong, P., Thomas, R.C., Houston, J.E., Michalske, T.A., Crooks, R.M., and Howard, A.J.: Nanometer-scale mechanics of gold films. Phys. Rev. Lett. 71, 3319 (1993).CrossRefGoogle ScholarPubMed
51.Wu, T.W., Hwang, C., Lo, J., and Alexopoulos, P.: Microhardness and microstructure of ion-beam-sputtered, nitrogen-doped NiFe films. Thin Solid Films 166, 299 (1988).CrossRefGoogle Scholar
52.Chiu, Y.L. and Ngan, A.H.W.: Time-dependent characteristics of incipient plasticity in nanoindentation of a Ni3Al single crystal. Acta Mater. 50, 1599 (2002).CrossRefGoogle Scholar
53.Chiu, Y.L. and Ngan, A.H.W.: A TEM investigation on indentation plastic zones in Ni3Al(Cr,B) single crystals. Acta Mater. 50, 2677 (2002).CrossRefGoogle Scholar
54.Wang, W., Jiang, C.B., and Lu, K.: Deformation behavior of Ni3Al single crystals during nanoindentation. Acta Mater. 51, 6169 (2003).CrossRefGoogle Scholar
55.Gaillard, Y., Tromas, C., and Woirgard, J.: Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Mater. 51, 1059 (2003).CrossRefGoogle Scholar
56.Page, T.F., Oliver, W.C., and McHargue, C.J.: The deformation behavior of ceramic crystals subjected to very low load (nano) indentations. J. Mater. Res. 7, 450 (1992).CrossRefGoogle Scholar
57.Pethica, J.B. and Oliver, W.C.: Tip surface interactions in STM and AFM, in 7th General Conference of the Condensed Matter Division of the European Physical Society (Phys. Scr. Vol. T, European Physcial Society, Mulhouse, France, 1987), p. 61.Google Scholar
58.Schuh, C.A. and Lund, A.C.: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 9, 2152 (2004).CrossRefGoogle Scholar
59.Xiaotong, W. and Padture, N.P.: Shear strength of ceramics. J. Mater. Sci. 39, 1891 (2004).Google Scholar
60.Courtney, T.H.: Mechanical Behavior of Materials, 2nd ed. (McGraw-Hill Science/Engineering/Math, New York, 1999).Google Scholar
61.Giannakopoulos, A.E. and Suresh, S.: Determination of elastoplas-tic properties by instrumented sharp indentation. Scr. Mater. 40, 1191 (1999).CrossRefGoogle Scholar
62.Thomas, R.C., Houston, J.E., Michalske, T.A., and Crooks, R.M.: Mechanical response of gold substrates passivated by self-assembling monolayer films. Science 259, 1883 (1993).CrossRefGoogle ScholarPubMed
63.Kelly, A. and Macmillan, N.H.: Strong Solids, 3rd ed. (Clarendon Press, Oxford, UK, 1986), pp. xiv + 423.Google Scholar
64.Schuh, C.A. and Nieh, T.G.: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).CrossRefGoogle Scholar
65.Moser, B., Kuebler, J., Meinhard, H., Muster, W., and Michler, J.: Observation of instabilities during plastic deformation by insitu SEM indentation experiments. Adv. Eng. Mater. 7, 388 (2005).CrossRefGoogle Scholar
66.Berces, G., Chinh, N.Q., Juhasz, A., and Lendvai, J.: Occurrence of plastic instabilities in dynamic microhardness testing. J. Mater. Res. 13, 1411 (1998).CrossRefGoogle Scholar
67.Chrobak, D., Nordlund, K., and Nowak, R.: Nondislocation origin of GaAs nanoindentation pop-in event. Phys. Rev. Lett. 98, 045502 (2007).CrossRefGoogle ScholarPubMed
68.Domnich, V., Gogotsi, Y., and Dub, S.: Effect of phase transformations on the shape of the unloading curve in the nanoindentation of silicon. Appl. Phys. Lett. 76, 2214 (2000).CrossRefGoogle Scholar
69.Bahr, D.F., Nelson, J.C., Tymiak, N.I., and Gerberich, W.W.: The mechanical behavior of a passivating surface under potentiostatic control. J. Mater. Res. 12, 3345 (1997).CrossRefGoogle Scholar
70.Larsson, P.L., Giannakopoulos, A.E., Soderlund, E., Rowcliffe, D.J., and Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221 (1996).CrossRefGoogle Scholar
71.Mann, A.B. and Pethica, J.B.: Role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 (1996).CrossRefGoogle Scholar
72.Mann, A.B. and Pethica, J.B.: Dislocation nucleation and multiplication during nanoindentation testing, in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 436, Pittsburgh, PA, 1997), p. 153.Google Scholar
73.Bahr, D.F., Watkins, C.M., Kramer, D.E., and Gerberich, W.W.: Yield point phenomena during indentation, in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 83.Google Scholar