Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:26:48.507Z Has data issue: false hasContentIssue false

Impact of high porosity on thermal transport in UO2 nuclear fuel

Published online by Cambridge University Press:  03 June 2013

Di Yun
Affiliation:
Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439
Marius Stan*
Affiliation:
Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

During the advance of the nuclear fission reaction, fission products accumulate and form pores (gas bubbles) that decrease the thermal conductivity of the nuclear fuel, potentially leading to overheating of the fuel element. To investigate this important phenomenon, a finite-element method is used to simulate the effect of 3-dimensional (3D) distributions of pores on the thermal transport in a nuclear fuel element consisting of uranium oxide (UO2) nuclear fuel pellet and Zircaloy cladding. Spherical pores ranging in size from 70 to 172 µm are introduced to create up to 30 vol% total porosity. The simulations demonstrate that the centerline temperature increases with the total porosity and the increase is nonlinear. The results also show that the centerline temperature, at fixed total porosity, weakly depends on the pore size distribution. This method can provide useful information regarding the effect of high porosity levels that may occur in off-normal operation conditions.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Martin, D.G.: A reappraisal of the thermal-conductivity of Uo2 and mixed (U, Pu) oxide fuels. J. Nucl. Mater. 110, 7394 (1982).CrossRefGoogle Scholar
Hyland, G.J.: Thermal-conductivity of solid Uo2-critique and recommendation. J. Nucl. Mater. 113, 125132 (1983).CrossRefGoogle Scholar
Harding, J.H. and Martin, D.G.: A recommendation for the thermal conductivity of Uo2. J. Nucl. Mater. 166, 223226 (1989).CrossRefGoogle Scholar
Lucuta, P.G., Matzke, H., and Hastings, I.J.: A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: Review and recommendations. J. Nucl. Mater. 232, 166180 (1996).CrossRefGoogle Scholar
Hayes, S.L. and Peddicord, K.L.: Radiative heat-transfer in porous uranium dioxide. J. Nucl. Mater. 202, 8797 (1993).CrossRefGoogle Scholar
Inoue, M., Abe, K., and Sato, I.: A method for determining an effective porosity correction factor for thermal conductivity in fast reactor uranium-plutonium oxide fuel pellets. J. Nucl. Mater. 281, 117128 (2000).CrossRefGoogle Scholar
Leob, A.L.: Thermal conductivity: VIII, a theory of thermal conductivity of porous materials. J. Am. Ceram. Soc. 37, 9699 (1954).CrossRefGoogle Scholar
Maxwell, J.C.: A Treatise on Electricity and Magnetism (Oxford University Press, Oxford, 1892).Google Scholar
Eucken, A.: General relations governing the heat conductivity of various kinds of substances and different states of aggregation. Forsch. Geb. Ingenieurwes. 11, 612 (1940).CrossRefGoogle Scholar
Nikolopoulos, P. and Ondracek, G.: Conductivity bounds for porous nuclear fuels. J. Nucl. Mater. 114, 231233 (1983).CrossRefGoogle Scholar
Kolstad, E. and Vitanza, C.: Fuel rod and core materials investigations related to LWR extended burnup operation. J. Nucl. Mater. 188, 104112 (1992).CrossRefGoogle Scholar
Wiesenack, W.: Review of Halden reactor project high burnup fuel data that can be used in safety analyses. Nucl. Eng. Des. 172, 8392 (1997).CrossRefGoogle Scholar
Bakker, K., Kwast, H., and Cordfunke, E.H.P.: Determination of a porosity correction factor for the thermal conductivity of irradiated UO2 fuel by means of the finite-element method. J. Nucl. Mater. 226, 128143 (1995).CrossRefGoogle Scholar
Hu, S.Y., Henager, C.H., Heinisch, H.L., Stan, M., Baskes, M.I., and Valone, S.M.: Phase-field modeling of gas bubbles and thermal conductivity evolution in nuclear fuels. J. Nucl. Mater. 392, 292300 (2009).CrossRefGoogle Scholar
Millett, P.C. and Tonks, M.: Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity. J. Nucl. Mater. 412, 281286 (2011).CrossRefGoogle Scholar
Fiedler, T., Belova, I.V., and Murch, G.E.: Theoretical and Lattice Monte Carlo analyses on thermal conduction in cellular metals. Comput. Mater. Sci. 50, 503509 (2010).CrossRefGoogle Scholar
Bradley, E.R., Cunningham, M.E., Lanning, D.D., and Williford, R.E.: Data Report for the Instrumented Fuel Assembly IFA-513, Pacific Northwest Laboratory, PNL-2627, 1981.CrossRefGoogle Scholar
Duderstadt, J.J. and Hamilton, L.J.: Nuclear Reactor Analysis, 1st ed. (John Wiley & Sons, Ann Arbor, MI, 1976).Google Scholar
Mihaila, B., Stan, M., Ramirez, J., Zubelewicz, A., and Cristea, P.: Simulations of coupled heat transport, oxygen diffusion, and thermal expansion in UO2 nuclear fuel elements. J. Nucl. Mater. 394, 182189 (2009).CrossRefGoogle Scholar
Thermophysical Properties Database of Materials for Light Water Reactors and Heavy Water Reactors. IAEA-TECDOC-1496, 2006.Google Scholar
Fink, J.K.: Thermophysical properties of uranium dioxide. J. Nucl. Mater. 279, 118 (2000).CrossRefGoogle Scholar
Martin, D.G.: The thermal-expansion of solid Uo2 and (U, Pu) mixed oxides - a review and recommendations. J. Nucl. Mater. 152, 94101 (1988).CrossRefGoogle Scholar
Higgs, J.D., Lewis, B.J., Thompson, W.T., and He, Z.: A conceptual model for the fuel oxidation of defective fuel. J. Nucl. Mater. 366, 99128 (2007).CrossRefGoogle Scholar
Amaya, M., Kubo, T., and Korei, Y.: Thermal conductivity measurements on UO2+x from 300 to 1,400 K. J. Nucl. Sci. Technol. 33, 636640 (1996).CrossRefGoogle Scholar
SCDAP/RELAP5/MOD3.1 Code Manual, MATPRO A Library of Materials Properties for Light-Water-Reactor Accident Analysis, edited by Hagrman, D.T. 1993.Google Scholar
Bejan, A.: Heat Transfer, 1st ed. (John Wiley & Sons, New York, 1993).Google Scholar
Janek, J. and Timm, H.: Thermal diffusion and Soret effect in (U, Me)O2+δ: The heat of transport of oxygen. J. Nucl. Mater. 255, 116127 (1998).CrossRefGoogle Scholar
Korte, C., Janek, J., and Timm, H.: Transport processes in temperature gradients thermal diffusion and Soret effect in crystalline solids. Solid State Ionics 101, 465470 (1997).CrossRefGoogle Scholar
Ramirez, J.C., Stan, M., and Cristea, P.: Simulations of heat and oxygen diffusion in UO2 nuclear fuel rods. J. Nucl. Mater. 359, 174184 (2006).CrossRefGoogle Scholar
Ozrin, V.D.: A model for evolution of oxygen potential and stoichiometry deviation in irradiated UO2 fuel. J. Nucl. Mater. 419, 371377 (2011).CrossRefGoogle Scholar