Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:24:06.300Z Has data issue: false hasContentIssue false

Identification of partial dislocations and faults in cubic Al3Ti

Published online by Cambridge University Press:  03 March 2011

S. Zhang
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931-1295
W.W. Milligan
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931-1295
D.E. Mikkola
Affiliation:
Department of Metallurgical and Materials Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931-1295
Get access

Abstract

Dislocation dissociations in Al3Ti alloys modified with Mn to stabilize the L12 cubic structure have been studied with transmission electron microscopy and computer simulation of images. Dissociations of a〈110〉 superdislocations into pairs of a/2〈110〉 partials bounding APB's were observed at all temperatures from room temperature to 700 °C. Asymmetrical image contrast, in which one of the a/2〈110〉 partials gives a much more intense image than the other, was observed at small separations of the partials. Although some investigators have taken such asymmetry to suggest SISF-type dissociations in similar alloys, the current work demonstrates that the asymmetry is fully consistent with APB-type dissociation. Further, the degree of image asymmetry decreases as the spacing of the partials increases. It is concluded that identification of the partial dislocations with “near-invisibility criteria” for fractional values of g · b is unreliable, and that computer simulation of images is useful for identification of the partials. However, as expected, the ability to distinguish simulated bright-field images of APB- and SISF-type dissociations also becomes difficult as the separation of the partials becomes very small. Under these conditions, both weak-beam imaging and simulations are necessary to identify the dissociations. Weak-beam simulations have shown that fringe contrast must be present under certain imaging conditions for SISF dissociations, and this contrast has never been observed in this study or in previously published studies of dissociated single superdislocations in cubic Al3Ti alloys. Finally, APB contrast formed with superlattice reflection imaging has been observed between partials on both {111} and {100} after deformation at 700 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schubert, K., Meissner, H. G., Raman, A., and Rossteutscher, W., Die Naturwissenschaften 51, 287 (1964).CrossRefGoogle Scholar
2Schubert, K., Meissner, H. G., Raman, A., and Rossteutscher, W., Die Naturwissenschaften 51, 507 (1964).CrossRefGoogle Scholar
3Raman, A. and Schubert, K., Z. Metallk. 56, 99 (1965).Google Scholar
4Markiv, V. Y., Burnashova, V. V., and Ryabov, V. P., Akad. Nauk Ukr. SSR, Metallofizika 46, 103 (1973).Google Scholar
5Zhang, S., Nic, J. P., and Mikkola, D. E., Scripta Metall. Mater. 24, 57 (1990).CrossRefGoogle Scholar
6Mabuchi, H., Hirukawa, K., Tsuda, H., and Nakayama, Y., Scripta Metall. Mater. 24, 505 (1990).CrossRefGoogle Scholar
7Mabuchi, H., Hirukawa, K., and Nakayama, Y., Scripta Metall. 23, 1761 (1989).CrossRefGoogle Scholar
8Nic, J. P., Zhang, S., and Mikkola, D. E., Scripta Metall. Mater. 24, 1099 (1990).CrossRefGoogle Scholar
9Mabuchi, H., Hirukawa, K., Katayama, K., Tsuda, H., and Nakayama, Y., Scripta Metall. et Mater. 24, 1553 (1990).CrossRefGoogle Scholar
10Powers, W. O. and Wert, J. A., Metall. Trans. A 21A, 145 (1990).CrossRefGoogle Scholar
11Nakayama, Y. and Mabuchi, H., Intermetallics 1, 41 (1993).CrossRefGoogle Scholar
12Parfitt, L. J., Smialek, J. L., Nic, J. P., and Mikkola, D. E., Scripta Metall. et Mater. 25, 727 (1991).CrossRefGoogle Scholar
13Zhang, S., Nic, J. P., Milligan, W. W., and Mikkola, D. E., Scripta Metall. et Mater. 24, 1441 (1990).CrossRefGoogle Scholar
14Vasudevan, V. K., Wheeler, R., and Fraser, H. L., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 705.Google Scholar
15Turner, C. D., Powers, W. O., and Wert, J. A., Acta Metall. 37, 2635 (1989).CrossRefGoogle Scholar
16George, E. P., Horton, J. A., Porter, W. D., and Schneibel, J. H., J. Mater. Res. 5, 1639 (1990).CrossRefGoogle Scholar
17Morris, D. G. and Lerf, R., in High Temperature Ordered Intermetallic Alloys IV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 305.Google Scholar
18Inoue, H. R. P., Cooper, C. V., Favrow, L. H., Hamada, Y., and Wayman, C. M., in High Temperature Ordered Intermetallic Alloys TV, edited by Johnson, L. A., Pope, D. P., and Stiegler, J. O. (Mater. Res. Soc. Symp. Proc. 213, Pittsburgh, PA, 1991), p. 493.Google Scholar
19Morris, D. G., J. Mater. Res. 7, 303 (1992).CrossRefGoogle Scholar
20Hu, G., Chen, S., Wu, X., and Chen, X., J. Mater. Res. 6, 957 (1991).CrossRefGoogle Scholar
21Inui, H., Luzzi, D. E., Porter, W. D., Pope, D. P., Vitek, V., and Yamaguchi, M., Philos. Mag. A 65, 245 (1992).CrossRefGoogle Scholar
22Wu, X., Rong, Y., Chen, S., and Hu, G., Scripta Metall. Mater. 28, 1519 (1993).CrossRefGoogle Scholar
23Zhang, S., Milligan, W. W., and Mikkola, D. E., Scripta Metall. Mater. 27, 1073 (1992).CrossRefGoogle Scholar
24Head, A. K., Humble, P., Clarebrough, L. M., Morton, A. J., and Fbrwood, G. T., Computed Electron Micrographs and Defect Identification (North-Holland, Amsterdam, 1973).Google Scholar
25Powers, W. O., Wert, J. A., and Turner, C. D., Philos. Mag. A 60, 227 (1989).CrossRefGoogle Scholar
26Hirsch, P., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelaa, M. J., Electron Microscopy of Thin Crystals, 2nd ed. (Krieger, Malabar, FL, 1977).Google Scholar
27Veyssière, P., Philos. Mag. A 50, 189 (1984).CrossRefGoogle Scholar
28Veyssière, P., Douin, J., and Beauchamp, P., Philos. Mag. A 51, 469 (1985).CrossRefGoogle Scholar
29Morris, D. G. and Gunther, S., Philos. Mag. A 68, 81 (1993).CrossRefGoogle Scholar
30Edington, J. W., Practical Electron Microscopy in Materials Science (Van Nostrand Reinhold, New York, 1976), p. 125130.Google Scholar
31Marcinkowski, M. J., Electron Microscopy and Strength of Crystals, edited by Thomas, G. and Washburn, J. (Interscience Publishers, New York, 1963), p. 333.Google Scholar
32Mikkola, D. E., Nic, J. P., Zhang, S., and Milligan, W. W., ISIJ Int. 31, 1076 (1991).CrossRefGoogle Scholar
33George, E. P., Pope, D. P., Fu, C. L., and Schneibel, J. H., ISIJ Int. 31, 1063 (1991).CrossRefGoogle Scholar
34Wilkens, M. and Hornbogen, E., Phys. Status Solidi 4, 557 (1964).CrossRefGoogle Scholar
35Schaublin, R. and Stadelmann, P., Mater. Sci. Eng. A 164, 373 (1993).CrossRefGoogle Scholar
36Baluc, B., Bonneville, J., Hemker, K. J., Martin, J. L., Schaublin, R., and Spatig, P., Mater. Sci. Eng. A 164, 379 (1993).CrossRefGoogle Scholar
37Cockayne, D. J. H., Ray, I. L. F, and Whelan, M. J., Philos. Mag. 20, 1265 (1969).CrossRefGoogle Scholar
38Cockayne, D. J. H., Jenkins, M. L., and Ray, I. L. F., Philos. Mag. 24, 1383 (1971).CrossRefGoogle Scholar
39Korner, A., Philos. Mag. A 58, 507 (1988).CrossRefGoogle Scholar
40Baluc, N., Karnthaler, H. P., and Mills, M. J., Philos. Mag. A 64, 137 (1991).CrossRefGoogle Scholar
41Hug, G., Loiseau, A., and Veyssière, P., Philos. Mag. A 57, 499 (1988).CrossRefGoogle Scholar
42Veyssière, P., Rev. Phys. App., Paris 23, 673 (1988).Google Scholar
43Yoshida, M. and Takasugi, T., Philos. Mag. A 66, 89 (1992).CrossRefGoogle Scholar
44Veyssière, P. and Morris, D. G., Philos. Mag. A 67, 491 (1993).CrossRefGoogle Scholar
45Veyssière, P., in High Temperature Ordered Intermetallic Alloys III, edited by Liu, C. T., Taub, A. I., Stoloff, N. S., and Koch, C. C. (Mater. Res. Soc. Symp. Proc. 133, Pittsburgh, PA, 1989), p. 175.Google Scholar
46Sun, Y. Q. and Hazzledine, P. M., Philos. Mag. A 58, 603 (1988).CrossRefGoogle Scholar
47Francois, A., Hug, G., and Veyssière, P., Philos. Mag. A 66, 269 (1992).CrossRefGoogle Scholar