Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T02:25:20.041Z Has data issue: false hasContentIssue false

Identification of optimal solar fuel electrocatalysts via high throughput in situ optical measurements

Published online by Cambridge University Press:  21 October 2014

Aniketa Shinde
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
Dan Guevarra
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
Joel A. Haber
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
Jian Jin
Affiliation:
Engineering Division and Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
John M. Gregoire*
Affiliation:
Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California 91125, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Many solar fuel generator designs involve illumination of a photoabsorber stack coated with a catalyst for the oxygen evolution reaction (OER). In this design, impinging light must pass through the catalyst layer before reaching the photoabsorber(s), and thus optical transmission is an important function of the OER catalyst layer. Many oxide catalysts, such as those containing elements Ni and Co, form oxide or oxyhydroxide phases in alkaline solution at operational potentials that differ from the phases observed in ambient conditions. To characterize the transparency of such catalysts during OER operation, 1031 unique compositions containing the elements Ni, Co, Ce, La, and Fe were prepared by a high throughput inkjet printing technique. The catalytic current of each composition was recorded at an OER overpotential of 0.33 V with simultaneous measurement of the spectral transmission. By combining the optical and catalytic properties, the combined catalyst efficiency was calculated to identify the optimal catalysts for solar fuel applications within the material library. The measurements required development of a new high throughput instrument with integrated electrochemistry and spectroscopy measurements, which enables various spectroelectrochemistry experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q.X., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446 (2010).Google Scholar
Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G.: Solar energy supply and storage for the legacy and non legacy worlds. Chem. Rev. 110, 6474 (2010).Google Scholar
Suntivich, J., May, K.J., Gasteiger, H.A., Goodenough, J.B., and Shao-Horn, Y.: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011).Google Scholar
Woodhouse, M. and Parkinson, B.A.: Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 38, 197 (2009).CrossRefGoogle ScholarPubMed
Chen, G.Y., Delafuente, D.A., Sarangapani, S., and Mallouk, T.E.: Combinatorial discovery of bifunctional oxygen reduction-water oxidation electrocatalysts for regenerative fuel cells. Catal. Today 67, 341 (2001).Google Scholar
Jaramillo, T.F., Ivanovskaya, A., and McFarland, E.W.: High-throughput screening system for catalytic hydrogen-producing materials. J. Comb. Chem. 4, 17 (2002).Google Scholar
Seley, D., Ayers, K., and Parkinson, B.A.: Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes. ACS Comb. Sci. 15, 82 (2013).Google Scholar
Gerken, J.B., Chen, J.Y.C., Masse, R.C., Powell, A.B., and Stahl, S.S.: Development of an O2 sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. Angew. Chem., Int. Ed. 51, 6676 (2012).CrossRefGoogle ScholarPubMed
Gerken, J.B., Shaner, S.E., Masse, R.C., Porubsky, N.J., and Stahl, S.S.: A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energy Environ. Sci. 7, 2376 (2014).CrossRefGoogle Scholar
Smith, R.D.L., Prévot, M.S., Fagan, R.D., Trudel, S., and Berlinquette, C.P.: Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt and nickel. J. Am. Chem. Soc. 135, 11580 (2013).Google Scholar
Minguzzi, A., Alpuche-Aviles, M.A., Lopez, J.R., Rondinini, S., and Bard, A.J.: Screening of oxygen evolution electrocatalysts by scanning electrochemical microscopy using a shielded tip approach. Anal. Chem. 80, 4055 (2008).Google Scholar
Liu, X.N., Shen, Y., Yang, R.T., Zou, S.H., Ji, X.L., Shi, L., Zhang, Y.C., Liu, D.Y., Xiao, L.P., Zheng, X.M., Li, S., Fan, J., and Stucky, G.D.: Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration. Nano Lett. 12, 5733 (2012).CrossRefGoogle ScholarPubMed
Trotochaud, L., Ranney, J.K., Williams, K.N., and Boettcher, S.W.: Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253 (2012).Google Scholar
Louie, M.W. and Bell, A.T.: An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135, 12329 (2013).CrossRefGoogle ScholarPubMed
Corrigan, D.A.: The catalysis of the oxygen evolution reaction by iron impurities in thin-film nickel-oxide electrodes. J. Electrochem. Soc. 134, 377 (1987).Google Scholar
Nikolov, I., Darkaoui, R., Zhecheva, E., Stoyanova, R., Dimitrov, N., and Vitanov, T.: Electrocatalytic activity of spinel related cobaltites MxCo3-xO4 (M=Li, Ni, Cu) in the oxygen evolution reaction. J. Electroanal. Chem. 429, 157 (1997).Google Scholar
Castro, E.B. and Gervasi, C.A.: Electrodeposited Ni-Co-oxide electrodes: Characterization and kinetics of the oxygen evolution reaction. Int. J. Hydrogen Energy 25, 1163 (2000).Google Scholar
Castro, E.B., Real, S.G., and Dick, L.F.P.: Electrochemical characterization of porous nickel-cobalt oxide electrodes. Int. J. Hydrogen Energy 29, 255 (2004).CrossRefGoogle Scholar
Tiwari, S.K., Samuel, S., Singh, R.N., Poillerat, G., Koenig, J.F., and Chartier, P.: Active thin NiCo2O4 film prepared on nickel by spray-pyrolysis for oxygen evolution. Int. J. Hydrogen Energy 20, 9 (1995).CrossRefGoogle Scholar
Bocca, C., Barbucci, A., Delucchi, M., and Cerisola, G.: Nickel-cobalt oxide-coated electrodes: Influence of the preparation technique on oxygen evolution reaction (OER) in an alkaline solution. Int. J. Hydrogen Energy 24, 21 (1999).CrossRefGoogle Scholar
Haber, J.A., Cai, Y., Jung, S.H., Xiang, C.X., Mitrovic, S., Jin, J., Bell, A.T., and Gregoire, J.M.: Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 7, 682 (2014).CrossRefGoogle Scholar
Haber, J.A., Xiang, C., Guevarra, D., Jung, S., Jin, J., and Gregoire, J.M.: High-throughput mapping of the electrochemical properties of (Ni-Fe-Co-Ce)Ox oxygen-evolution catalysts. ChemElectroChem 1, 524 (2014).CrossRefGoogle Scholar
Haber, J.A., Guevarra, D., Jung, S., Jin, J., and Gregoire, J.M.: Discovery of new oxygen evolution reaction electrocatalysts by combinatorial investigation of the Ni–La–Co–Ce oxide composition space. ChemElectroChem 1, 1586 (2014).Google Scholar
Boettcher, S.W., Strandwitz, N.C., Schierhorn, M., Lock, N., Lonergan, M.C., and Stucky, G.D.: Tunable electronic interfaces between bulk semiconductors and ligand-stabilized nanoparticle assemblies. Nat. Mater. 6, 592 (2007).Google Scholar
Yang, X., Du, C., Liu, R., Xie, J., and Wang, D.: Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination. J. Catal. 304, 86 (2013).Google Scholar
Riha, S.C., Klahr, B.M., Tyo, E.C., Seifert, S., Vajda, S., Pellin, M.J., Hamann, T.W., and Martinson, A.B.F.: Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 7, 2396 (2013).CrossRefGoogle ScholarPubMed
Gregoire, J.M., Xiang, C., Mitrovic, S., Liu, X., Marcin, M., Cornell, E.W., Fan, J., and Jin, J.: Combined catalysis and optical screening for high throughput discovery of solar fuels catalysts. J. Electrochem. Soc. 160, F337 (2013).CrossRefGoogle Scholar
Bañares, M.A.: Operando methodology: Combination of in situ spectroscopy and simultaneous activity measurements under catalytic reaction conditions. Catal. Today 100, 71 (2005).CrossRefGoogle Scholar
Bandarenka, A.S., Ventosa, E., Maljusch, A., Masa, J., and Schuhmann, W.: Techniques and methodologies in modern electrocatalysis: Evaluation of activity, selectivity and stability of catalytic materials. Analyst 139, 1274 (2014).Google Scholar
Hu, Y., Bae, I.T., Mo, Y., Scherson, D.A., and Antonio, M.R.: In situ x-ray absorption fine structure and optical reflectance studies of electrodeposited nickel hydrous oxide films in alkaline electrolytes. Can. J. Chem. 75, 1721 (1997).CrossRefGoogle Scholar
Bediako, D.K., Lassalle-Kaiser, B., Surendranath, Y., Yano, J., Yachandra, V.K., and Nocera, D.G.: Structure–activity correlations in a nickel–borate oxygen evolution catalyst. J. Am. Chem. Soc. 134, 6801 (2012).Google Scholar
Rauh, R.D.: Electrochromic windows: An overview. Electrochim. Acta 44, 3165 (1999).CrossRefGoogle Scholar
Niklasson, G.A. and Granqvist, C.G.: Electrochromics for smart windows: Thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17, 127 (2007).CrossRefGoogle Scholar
Svegl, F., Orel, B., Hutchins, M.G., and Kalcher, K.: Structural and spectroelectrochemical investigations of sol-gel derived electrochromic spinel Co3O4 films. J. Electrochem. Soc. 143, 1532 (1996).CrossRefGoogle Scholar
Orel, B., Macek, M., Svegl, F., and Kalcher, K.: Electrochromism of iron-oxide films prepared via the sol-gel route by the dip-coating technique. Thin Solid Films 246, 131 (1994).Google Scholar
Maruyama, T. and Kanagawa, T.: Electrochromic properties of iron oxide thin films prepared by chemical vapor deposition. J. Electrochem. Soc. 143, 1675 (1996).CrossRefGoogle Scholar
Ozer, N. and Tepehan, F.: Optical and electrochemical characteristics of sol-gel deposited iron oxide films. Sol. Energy Mater. Sol. Cells 56, 141 (1999).Google Scholar
Beni, G. and Shay, J.L.: Electrochromism in anodic iridium oxide-films. Appl. Phys. Lett. 33, 208 (1978).Google Scholar
Gottesfeld, S. and McIntyre, J.D.E.: Electrochromism in anodic iridium oxide-films II: pH effects on corrosion stability and the mechanism of coloration and bleaching. J. Electrochem. Soc. 126, 742 (1979).Google Scholar
Chen, Y.J., Taylor, P.L., and Scherson, D.: Electrochemical and in situ optical studies of supported iridium oxide films in aqueous solutions. J. Electrochem. Soc. 156, F14 (2009).CrossRefGoogle Scholar
Trotochaud, L., Mills, T.J., and Boettcher, S.W.: An optocatalytic model for semiconductor–catalyst water-splitting photoelectrodes based on in situ optical measurements on operational catalysts. J. Phys. Chem. Lett. 4, 931 (2013).Google Scholar
Yoshida, M., Iida, T., Mineo, T., Yomogida, T., Nitta, K., Kato, K., Nitani, H., Abe, H., Uruga, T., and Kondoh, H.: Electrochromic characteristics of a nickel borate thin film investigated by in situ XAFS and UV/vis spectroscopy. Electrochemistry 82, 355 (2014).CrossRefGoogle Scholar
Gregoire, J.M., Xiang, C.X., Liu, X.N., Marcin, M., and Jin, J.: Scanning droplet cell for high throughput electrochemical and photoelectrochemical measurements. Rev. Sci. Instrum. 84, 024102 (2013).Google Scholar
Fan, J., Boettcher, S.W., and Stucky, G.D.: Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process. Chem. Mater. 18, 6391 (2006).CrossRefGoogle Scholar