Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T20:51:17.977Z Has data issue: false hasContentIssue false

Hyperpolarized 129Xe nuclear magnetic resonance study of mesoporous silicon sponge materials

Published online by Cambridge University Press:  08 May 2017

Yougang Mao
Affiliation:
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
Dokyoung Kim
Affiliation:
Department of Anatomy and Neurobiology, School of Medicine, and the Center for Converging Humanities, Kyung Hee University, Seoul 130-701, Republic of Korea
Jinmyoung Joo
Affiliation:
Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea; and Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
Michael J. Sailor
Affiliation:
Department of Chemistry and Biochemistry, University of California, San Diego, California 92093-0358, USA
Russell Hopson
Affiliation:
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
Li-Qiong Wang*
Affiliation:
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Mesoporous silicon sponge (MSS) is considered as a promising anode material for lithium ion batteries because of its preformed meso/macro porous structures that can accommodate large volume expansion during the lithiation process and its superior electrochemical performance. Temperature dependent hyperpolarized (HP) 129Xe NMR was applied to characterize the structure and porosity of MSS materials with varying pores and particle sizes. Our results reveal irregular pore structures with the presence of micropores inside the larger meso/macropore channels and each MSS material has its own characteristic pore environment with a varying degree of nonuniformity and connectivity of pores. This study demonstrates that HP 129Xe NMR is a potentially useful tool for providing a fingerprint of the structure and connectivity of the pores for each material, complementary to other characterization techniques.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

These authors contributed equally.

Contributing Editor: Paolo Colombo

References

REFERENCES

Armand, M. and Tarascon, J-M.: Building better batteries. Nature 451, 652657 (2008).CrossRefGoogle ScholarPubMed
Whittingham, M.S.: Materials challenges facing electrical energy storage. MRS Bull. 33, 411419 (2008).CrossRefGoogle Scholar
Smith, A.J., Burns, J.C., Zhao, X., Xiong, D., and Dahn, J.R.: A high precision coulometry study of the SEI growth in Li/graphite cells. J. Electrochem. Soc. 158, A447A452 (2011).CrossRefGoogle Scholar
Oumellal, Y., Delpuech, N., Mazouzi, D., Dupré, N., Gaubicher, J., Moreau, P., Soudan, P., Lestriez, B., and Guyomard, D.: The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J. Mater. Chem. 21, 62016208 (2011).CrossRefGoogle Scholar
Holzapfel, M., Buqa, H., Krumeich, F., Petrat, F-M., and Veit, C.: Chemical vapor deposited silicon/graphite compound material as negative electrode for lithium-ion batteries. Electrochem. Solid-State Lett. 8, A516A520 (2005).CrossRefGoogle Scholar
Obrovac, M.N. and Krause, L.J.: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103A108 (2007).CrossRefGoogle Scholar
Park, O.K., Cho, Y., Lee, S., Yoo, H-C., Song, H-K., and Cho, J.: Who will drive electric vehicles, olivine or spinel? Energy Environ. Sci. 4, 16211633 (2011).CrossRefGoogle Scholar
Smith, A.J., Dahn, H.M., Burns, J.C., and Dahn, J.R.: Long-term low-rate cycling of LiCoO2/graphite Li-ion cells at 55 °C. J. Electrochem. Soc. 159, A705A710 (2012).CrossRefGoogle Scholar
Kasavajjula, U., Wang, C., and Appleby, A.J.: Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 163, 10031039 (2007).CrossRefGoogle Scholar
Zhang, W-J.: A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J. Power Sources 196, 1324 (2011).CrossRefGoogle Scholar
Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T., and Huang, J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 15221531 (2012).CrossRefGoogle ScholarPubMed
McDowell, M.T., Ryu, I., Lee, S.W., Wang, C., Nix, W.D., and Cui, Y.: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 60346041 (2012).CrossRefGoogle ScholarPubMed
Gu, M., Li, Y., Li, X., Hu, S., Zhang, X., Xu, W., Thevuthasan, S., Baer, D.R., Zhang, J-G., Liu, J., and Wang, C.: In Situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 84398447 (2012).CrossRefGoogle Scholar
Li, X., Gu, M., Hu, S., Kennard, R., Yan, P., Chen, X., Wang, C., Sailor, M.J., Zhang, J-G., and Liu, J.: Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nat. Commun. 5, 4105 (2014).CrossRefGoogle ScholarPubMed
Moudrakovski, I.L., Terskikh, V.V., Ratcliffe, C.I., Ripmeester, J.A., Wang, L-Q., Shin, Y., and Exarhos, G.J.: A 129Xe NMR study of functionalized ordered mesoporous silica. J. Phys. Chem. B 106, 59385946 (2002).CrossRefGoogle Scholar
Ripmeester, J.A.: Nuclear shielding of trapped xenon obtained by proton-enhanced, magic-angle spinning xenon-129 NMR spectroscopy. J. Am. Chem. Soc. 104, 289290 (1982).CrossRefGoogle Scholar
Ito, T. and Fraissard, J.: 129Xe NMR study of xenon adsorbed on Y zeolites. J. Chem. Phys. 76, 52255229 (1982).CrossRefGoogle Scholar
Ratcliffe, C.I.: Xenon NMR. Annu. Rep. NMR Spectrosc. 36, 123221 (1998).CrossRefGoogle Scholar
Grover, B.C.: Noble-gas NMR detection through noble-gas-rubidium hyperfine contact interaction. Phys. Rev. Lett. 40, 391 (1978).CrossRefGoogle Scholar
Happer, W., Miron, E., Schaefer, S., Schreiber, D., van Wingaarden, W.A., and Zeng, X.: Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms. Phys. Rev. A 29, 30923110 (1984).CrossRefGoogle Scholar
Driehuys, B., Cates, G.D., Miron, E., Sauer, K., Walter, D.K., and Happer, W.: High-volume production of laser-polarized 129Xe. Appl. Phys. Lett. 69, 16681670 (1996).CrossRefGoogle Scholar
Ruset, I.C., Ketel, S., and Hersman, F.W.: Optical pumping system design for large production of hyperpolarized 129Xe. Phys. Rev. Lett. 96, 053002 (2006).CrossRefGoogle Scholar
Moudrakovski, I.L., Nossov, A., Lang, S., Breeze, S.R., Ratcliffe, C.I., Simard, B., Santyr, G., and Ripmeester, J.A.: Continuous flow NMR with hyperpolarized xenon for the characterization of materials and processes. Chem. Mater. 12, 11811183 (2000).CrossRefGoogle Scholar
Moudrakovski, I.L., Wang, L-Q., Baumann, T., Satcher, J.H. Jr., Exarhos, G.J., Ratcliffe, C.I., and Ripmeester, J.A.: Probing the geometry and interconnectivity of pores in organic aerogels using hyperpolarized 129Xe NMR spectroscopy. J. Am. Chem. Soc. 126, 50525053 (2004).CrossRefGoogle ScholarPubMed
Knagge, K., Smith, J.R., Smith, L.J., Buriak, J., and Raftery, D.: Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments. Solid State Nucl. Magn. Reson. 29, 8589 (2006).CrossRefGoogle ScholarPubMed
Terskikh, V.V., Moudrakovski, I.L., and Mastikhin, V.M.: 129Xe nuclear magnetic resonance studies of the porous structure of silica gels. J. Chem. Soc., Faraday Trans. 89, 42394243 (1993).CrossRefGoogle Scholar
Ripmeester, J.A. and Ratcliffe, C.I.: On the application of 129Xe NMR to the study of microporous solids. J. Phys. Chem. 94, 76527656 (1990).CrossRefGoogle Scholar
Terskikh, V.V., Moudrakovski, I.L., Breeze, S.R., Lang, S., Ratcliffe, C.I., Ripmeester, J.A., and Sayari, A.: A general correlation for the 129Xe NMR chemical shift-pore size relationship in porous silica-based materials. Langmuir 18, 56535656 (2002).CrossRefGoogle Scholar
Wang, L-Q., Wang, D., Liu, L., Exarhos, G.J., Pawsey, S., and Moudrakovski, I.: Probing porosity and pore interconnectivity in crystalline mesoporous TiO2 using hyperpolarized 129Xe NMR. J. Phys. Chem. C 113, 65776583 (2009).CrossRefGoogle Scholar
Canham, L.T.: Characterization challenges with porous silicon. In Handbook of Porous Silicon, Canham, L.T., ed. (Springer, Switzerland, 2014); p. 405.CrossRefGoogle Scholar
Loni, A.: Gas adsorption analysis of porous silicon. In Handbook of Porous Silicon, Canham, L.T., ed. (Springer, Switzerland, 2014); p. 405.Google Scholar
Sailor, M.J.: Porous Silicon in Practice: Preparation, Characterization, and Applications (Wiley-VCH, Weinheim, Germany, 2012); p. 249.Google Scholar
Supplementary material: File

Mao supplementary material

Figures S1-S4 and Tables S1-S5

Download Mao supplementary material(File)
File 2.3 MB