Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T12:57:23.478Z Has data issue: false hasContentIssue false

Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube thermosetting nanocomposites as microwave actuated shape memory materials

Published online by Cambridge University Press:  07 August 2013

Hemjyoti Kalita
Affiliation:
Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
Niranjan Karak*
Affiliation:
Advanced Polymer & Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028, Assam, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube (Fe3O4-MWCNT) nanocomposites were prepared by the in situ polymerization technique. The presence of Fe3O4 nanoparticles on the surface of the MWCNTs was confirmed by x-ray diffraction and transmission electron microscopic studies. The saturation magnetization value of Fe3O4-MWCNT was 0.23 emu/g. The glycidyl ether of bisphenol-A epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.4–38.5 MPa), scratch hardness (3.0–8.5 kg), and thermal stability (241–292 °C) with the increase of loading of Fe3O4-MWCNT (0–2 wt%). The nanocomposites possess good shape fixity over the repeated cycles of test. The nanocomposites also showed good shape recovery under the application of microwave irradiation. The shape recovery speed was found to be increased with the increase of the content of Fe3O4-MWCNT. Thus, the studied thermosetting nanocomposites have potential to be used as noncontact shape memory materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Small, W., Singhal, P., Wilson, T.S., and Maitland, D.J.: Biomedical applications of thermally activated shape memory polymer. J. Mater. Chem. 20, 3356 (2010).CrossRefGoogle Scholar
Lee, K.M., Koerner, H., Vaia, R.A., Bunning, T.J., and White, T.J.: Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318 (2011).CrossRefGoogle Scholar
Yakacki, C.M.: Shape-memory and shape-changing polymers. Polym. Rev. 53, 1 (2013).CrossRefGoogle Scholar
Lee, H.F., and Yu, H.H.: Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 7, 3801 (2011).CrossRefGoogle Scholar
Cai, Y., Jiang, J.S., Zheng, B., and Xie, M.R.: Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(ε-caprolactone)-polyurethane nanocomposites. J. Appl. Polym. Sci. 127, 49 (2013).CrossRefGoogle Scholar
Haghayegh, M. and Sadeghi, G.M.M.: Synthesis of shape memory polyurethane/clay nanocomposites and analysis of shape memory, thermal, and mechanical properties. Polym. Compos. 33, 843 (2012).CrossRefGoogle Scholar
Jang, M.K., Hartwig, A., and Kim, B.K.: Shape memory polyurethanes cross-linked by surface modified silica particles. J. Mater. Chem. 19, 1166 (2009).CrossRefGoogle Scholar
Rousseau, I.A.: Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations. Polym. Eng. Sci. 48, 2075 (2008).CrossRefGoogle Scholar
Cuevas, J.M., Rubio, R., Laza, J.M., Vilas, J.L., Rodriguez, M., and Leon, L.M.: Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater. Struct. 21, 035004 (2012).CrossRefGoogle Scholar
Xu, J., Shi, W., and Pang, W.: Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47, 457 (2006).CrossRefGoogle Scholar
Zhang, C.S., and Ni, Q.Q.: Bending behavior of shape memory polymer based laminates Compos. Struct. 78, 153 (2007).CrossRefGoogle Scholar
Deka, H. and Karak, N.: Shape-memory property and characterization of epoxy resin-modified Mesua ferrea L. seed oil-based hyperbranched polyurethane. J. Appl. Polym. Sci. 116, 106 (2010).CrossRefGoogle Scholar
Rajasekaran, R. and Alagar, M.: Mechanical properties of bismaleimides modified polysulfone epoxy matrices. Int. J. Polym. Mater. 56, 911 (2007).CrossRefGoogle Scholar
Unnikrishnan, K.P. and Thachil, E.T.: Toughening of epoxy resins. Des. Monomers Polym. 9, 129 (2006).CrossRefGoogle Scholar
Hemmati, M., Narimani, A., Shariatpanahi, H., Fereidoon, A., and Ahangari, M.G.: Study on morphology, rheology and mechanical properties of thermoplastic elastomer polyolefin (TPO)/carbon nanotube nanocomposites with reference to the effect of polypropylene-grafted-maleic anhydride (PP-g-MA) as a compatibilizer. Int. J. Polym. Mater. 60, 384 (2011).CrossRefGoogle Scholar
Rahmat, M. and Hubert, P.: Carbon nanotube–polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 72, 72 (2011).CrossRefGoogle Scholar
Wang, Y.T., Wang, C.S., Yin, H.Y., Wang, L.L., Xie, H.F., and Cheng, R.S.: Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties. Express Polym. Lett. 6, 719 (2012).CrossRefGoogle Scholar
Zhao, J.C., Du, F.P., Zhou, X.P., Cui, W., Wang, X.M., Zhu, H., Xie, X.L., and Mei, Y.W.: Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites. Composites Part B 42, 2111 (2011).CrossRefGoogle Scholar
Taheri, S., Nakhlband, E., and Nazockdast, H.: Microstructure and multiwall carbon nanotube partitioning in polycarbonate/acrylonitrile-butadiene-styrene/multiwall carbon nanotube nanocomposites. Polym. Plast. Technol. Eng. 52, 300 (2013).CrossRefGoogle Scholar
Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).CrossRefGoogle Scholar
Song, P., Shen, Y., Du, B., Guo, Z., and Fang, Z.: Fabrication of fullerene-decorated carbon nanotubes and their application in flame-retarding polypropylene. Nanoscale 1, 118 (2009).CrossRefGoogle ScholarPubMed
Khanderi, J., Hoffmann, R.C., Gurlo, A., and Schneider, J.J.: Synthesis and sensoric response of ZnO decorated carbon nanotubes. J. Mater. Chem. 19, 5039 (2009).CrossRefGoogle Scholar
Zhang, Q., Zhu, M., Zhang, Q., Li, Y., and Wang, H.: The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes. Compos. Sci. Technol. 69, 633 (2009).CrossRefGoogle Scholar
Kong, L., Lu, X., and Zhang, W.: Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. J. Solid State Chem. 181, 628 (2008).CrossRefGoogle Scholar
Li, H.Y., Chang, C.M., Hsu, K.Y., and Liu, Y.L.: Poly(lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J. Mater. Chem. 22, 4855 (2012).CrossRefGoogle Scholar
Zhan, Y., Zhao, R., Lei, Y., Meng, F., Zhong, J., and Liu, X.: A novel carbon nanotubes/Fe3O4 inorganic hybrid material: Synthesis, characterization and microwave electromagnetic properties. J. Magn. Magn. Mater. 323, 1006 (2011).CrossRefGoogle Scholar
Ni, S., Lin, S., Pan, Q., Yang, F., Huang, K., and He, D.: Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J. Phys. D: Appl. Phys. 42, 055004 (2009).CrossRefGoogle Scholar
Dutta, S. and Karak, N.: Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins. Polym. Int. 55, 49 (2006).CrossRefGoogle Scholar
Kalita, H. and Karak, N.: Mesua ferrea L. seed oil-based hyperbranched shape memory polyurethanes: Effect of multifunctional component. Polym. Eng. Sci. 52, 2454 (2012).CrossRefGoogle Scholar
Jung, Y.C., So, H.H., and Cho, J.W.: Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane. J. Macromol. Sci. Phys. 45, 453 (2006).CrossRefGoogle Scholar
Zhang, Y., Heath, R.J., and Hourston, D.J.: Morphology, mechanical properties, and thermal stability of polyurethane–epoxide resin interpenetrating polymer network rigid foams. J. Appl. Polym. Sci. 75, 406 (2000).3.0.CO;2-B>CrossRefGoogle Scholar
Desai, S.D., Emanuel, A.L., and Sinha, V.K.: Polyester polyol-based polyurethane adhesive; effect of treatment on rubber surface. J. Polym. Res. 10, 141 (2003).CrossRefGoogle Scholar
Thakur, S. and Karak, N.: Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331 (2012).CrossRefGoogle Scholar
Park, J.O., Rhee, K.Y., and Park, S.J.: Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites. Appl. Surf. Sci. 256, 6945 (2010).CrossRefGoogle Scholar
Deka, H., Karak, N., Kalita, R.D., and Buragohain, A.K.: Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48, 2013 (2010).CrossRefGoogle Scholar
Kalita, H. and Karak, N.: Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites as shape memory materials. Polym. Adv. Technol. doi: 10.1002/pat.3149.CrossRefGoogle Scholar
Rana, S., Karak, N., Cho, J.W., and Kim, Y.H.: Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites. Nanotechnology 19, 495707 (2008).CrossRefGoogle ScholarPubMed
Yadav, S.K., Mahapatra, S.S., and Cho, J.W.: Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes. Polymer 53, 2023 (2012).CrossRefGoogle Scholar
Mahapatra, S.S., Yadav, S.K., Yoo, H.J., Cho, J.W., and Park, J.S.: Highly branched polyurethane: Synthesis, characterization and effects of branching on dispersion of carbon nanotubes. Composites Part B 45, 165 (2013).CrossRefGoogle Scholar
Viry, L., Mercader, C., Miaudet, P., Zakri, C., Derre, A., Kuhn, A., Maugey, M., and Poulin, P.: Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 20, 3487 (2010).CrossRefGoogle Scholar
Zhou, W., Hu, X., Bai, X., Zhou, S., Sun, C., Yan, J., and Chen, P.: Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 3, 3839 (2011).CrossRefGoogle ScholarPubMed