Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T12:05:45.910Z Has data issue: false hasContentIssue false

Hydrothermal zinc oxide nanowire growth using zinc acetate dihydrate salt

Published online by Cambridge University Press:  13 April 2012

Mehmet Can Akgun
Affiliation:
Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
Yunus Eren Kalay
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
Husnu Emrah Unalan*
Affiliation:
Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey; and Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, Turkey
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Hydrothermal approach is widely used for the synthesis of zinc oxide (ZnO) nanowires. Zinc nitrate hexahydrate, zinc acetate and zinc chloride are three common salts that are used for synthesis. Among these, zinc nitrate hexahydrate is primarily used in many studies and zinc chloride is preferred for electrodeposition. In this work, zinc acetate dihydrate salt is used for the growth of ZnO nanowires and the effects of time, temperature, solution concentration and concentration ratios of the precursor chemicals are investigated. It is found that the growth time and solution concentration control the lengths of the nanowires, whereas the precursor concentration ratio and solution concentration control their diameter. High solution concentrations and high zinc acetate dihydrate concentrations lead to the development of thin film morphology. Optimum growth parameters are obtained and suggested for the use of zinc acetate dihydrate as a zinc source for growing ZnO nanowires with high aspect ratio (AR). The use of zinc acetate dihydrate leads to the formation of ZnO nanowires without impurities and eliminates the need for using extra capping agents.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P.: Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001).CrossRefGoogle ScholarPubMed
2.Li, C., Zhang, Y., Mann, M., Hiralal, P., Unalan, H.E., Lei, W., Wang, B.P., Chu, D.P., Piribat, D., Amaratunga, G.A.J., and Milne, W.I.: Stable, self-ballasting field emission from zinc oxide nanowires grown on an array of vertically aligned carbon nanofibers. Appl. Phys. Lett. 96, 143114 (2010).CrossRefGoogle Scholar
3.Zhu, Y.W., Zhang, H.Z., Sun, X.C., Feng, S.Q., Xu, J., Zhao, Q., Xiang, B., Wang, R.M., and Yu, D.P.: Efficient field emission from ZnO nanoneedle arrays. Appl. Phys. Lett. 83, 144 (2003).CrossRefGoogle Scholar
4.Santra, S., Guha, P.K., Ali, S.Z., Hiralal, P., Unalan, H.E., Covington, J.A., Amaratunga, G.A.J., Milne, W.I., Gardner, J.W., and Udrea, F.: ZnO nanowires grown on SOI CMOS substrate for ethanol sensing. Sens. Actuators, B 146, 559 (2010).Google Scholar
5.Wang, X., Summers, C.J., and Wang, Z.L.: Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett. 4, 423 (2004).CrossRefGoogle ScholarPubMed
6.Li, F.M., Hsieh, G-W., Dalal, S., Newton, M.C., Scott, J.E., Hiralal, P., Nathan, A., Warburton, P.A., Unalan, H.E., Beecher, P., Flewitt, A.J., Robinson, I., Amaratunga, G.A.J., and Milne, W.I.: Zinc oxide nanostructures and high electron mobility nanocomposite thin film transistors. IEEE Trans. Electron Devices 55, 3001 (2008).CrossRefGoogle Scholar
7.Law, M., Greene, L.E., Johnson, J.C., Saykally, R., and Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005).CrossRefGoogle ScholarPubMed
8.Unalan, H.E., Wei, D., Suzuki, K., Dalal, S., Hiralal, P., Matsumoto, H., Imaizumi, S., Minagawa, M., Tanioka, A., Flewitt, A.J., Milne, W.I., and Amaratunga, G.A.J.: Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116 (2008).CrossRefGoogle Scholar
9.Unalan, H.E., Hiralal, P., Kuo, D., Parekh, B., Amaratunga, G.A.J., and Chhowalla, M.: Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thin films. J. Mater. Chem. 18, 5909 (2008).Google Scholar
10.Wang, Z.L. and Song, J.: Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312, 242 (2006).CrossRefGoogle ScholarPubMed
11.Lu, M-P., Song, J., Lu, M-Y., Chen, M-T., Gao, Y., Chen, L-J., and Wang, Z.L.: Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett. 9, 1223 (2009).CrossRefGoogle ScholarPubMed
12.Jeong, M-C., Oh, B-Y., Ham, M-H., and Myoung, J-M.: Electroluminescence from ZnO nanowires in n-ZnO film/ZnO nanowire array/p-GaN film heterojunction light-emitting diodes. Appl. Phys. Lett. 88, 202105 (2006).Google Scholar
13.Wu, J-J., Wen, H-I., Tseng, C-H., and Liu, S-C.: Well-aligned ZnO nanorods via hydrogen treatment of ZnO films. Adv. Funct. Mater. 14, 806 (2004).Google Scholar
14.Lyu, S.C., Zhang, Y., Lee, C.J., Ruh, H., and Lee, H.J.: Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chem. Mater. 15, 3294 (2003).CrossRefGoogle Scholar
15.Yuan, H. and Zhang, Y.: Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. J. Cryst. Growth 263, 119 (2004).Google Scholar
16.Ye, Z., Huang, J., Xu, W., Zhou, J., and Wang, Z.: Catalyst-free MOCVD growth of aligned ZnO nanotip arrays on silicon substrate with controlled tip shape. Solid State Commun. 141, 464 (2007).Google Scholar
17.Greene, L.E., Law, M., Tan, D.H., Montano, M., Goldberger, J., Somorjai, G., and Yang, P.: General route to vertical ZnO nanowire arrays using textured ZnO seeds. Nano Lett. 5, 1231 (2005).Google Scholar
18.Xu, S., Lao, C., Weintraub, B., and Lin, Z.: Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces. J. Mater. Res. 23, 2072 (2008).CrossRefGoogle Scholar
19.Wang, S-F., Tseng, T-Y., Wang, Y-R., Wang, C-Y., Lu, H-C., and Shih, W-L.: Effects of preparation conditions on the growth of ZnO nanorod arrays using aqueous solution method. Int. J. Appl. Ceram. Technol. 5, 419 (2008).CrossRefGoogle Scholar
20.Xu, S., Adiga, N., Ba, S., Dasgupta, T., Wu, C.F.J., and Wang, Z.L.: Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano 3, 1803 (2009).Google Scholar
21.Zhang, W. and Yanagisawa, K.: Hydrothermal synthesis of ZnO long fibers. Chem. Lett. 34, 1170 (2005).Google Scholar
22.Li, L., Yang, H., Yu, J., Chen, Y., Ma, J., Zhang, J., Song, Y., and Gao, F.: Controllable growth of ZnO nanowires with different aspect ratios and microstructures and their photoluminescence and photosensitive properties. J. Cryst. Growth 311, 4199 (2009).CrossRefGoogle Scholar
23.Unalan, H.E., Hiralal, P., Rupesinghe, N., Dalal, S., Milne, W.I., and Amaratunga, G.A.J.: Rapid synthesis of aligned zinc oxide nanowires. Nanotechnology 19, 255608 (2008).Google Scholar
24.Xu, S., Wei, Y., Kirkham, M., Liu, J., Mai, W., Davidovic, D., Snyder, R.L., and Wang, Z.L.: Patterned growth of vertically aligned ZnO nanowire arrays on inorganic substrates at low temperature without catalyst. J. Am. Chem. Soc. 130, 14958 (2008).CrossRefGoogle ScholarPubMed
25.Sun, Y., Riley, D.J., and Ashfold, M.N.R.: Mechanism of ZnO nanotube growth by hydrothermal methods on ZnO film-coated Si substrates. J. Phys. Chem. B 110, 15186 (2006).Google Scholar
26.Lee, Y-J., Sounart, T.L., Scrymgeour, D.A., Voigt, J.A., and Hsu, J.W.P.: Control of ZnO nanorod array alignment synthesized via seeded solution growth. J. Cryst. Growth 304, 80 (2007).Google Scholar
27.Lee, Y-J., Sounart, T.L., Liu, J., Spoerke, E.D., McKenzie, B.B., Hsu, J.W.P., and Voigt, J.A.: Tunable arrays of ZnO nanorods and Nanoneedles via seed layer and solution chemistry. Cryst. Growth Des. 8, 2036 (2008).Google Scholar
28.Qin, Y., Yang, R., and Wang, Z.L.: Growth of horizontal ZnO nanowire arrays on any substrate. J. Phys. Chem. C 112, 18734 (2008).Google Scholar
29.Kim, Y-J., Lee, C-H., Hong, Y.J., Yi, G-C., Kim, S.S., and Cheong, H.: Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Appl. Phys. Lett. 89, 163128 (2006).Google Scholar
30.Vayssieres, L.: Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464 (2003).CrossRefGoogle Scholar
31.Yuhas, B.D., Zitoun, D.O., Pauzauskie, P.J., He, R., and Yang, P.: Transition-metal-doped zinc oxide nanowires. Angew. Chem. Int. Ed. 45, 420 (2006).CrossRefGoogle ScholarPubMed
32.Gao, P-X., Liu, J., Buchine, B.A., Weintraub, B., Wang, Z.L., and Lee, J.L.: Bridged ZnO nanowires across trenched electrodes. Appl. Phys. Lett. 91, 142108 (2007).CrossRefGoogle Scholar
33.Jung, S-H., Oh, E., Lee, K-H., Park, W., and Jeong, S-H.: A sonochemical method for fabricating aligned ZnO nanorods. Adv. Mater. 19, 749 (2007).CrossRefGoogle Scholar
34.Xi, Y., Song, J., Xu, S., Yang, R., Gao, Z., Hu, C., and Wang, Z.L.: Growth of ZnO nanotube arrays and nanotube-based piezoelectric nanogenerators. J. Mater. Chem. 19, 9260 (2009).Google Scholar
35.Huang, J-S., and Lin, C-F.: Influences of ZnO sol-gel thin film characteristics on ZnO nanowire arrays prepared at low temperature using all solution-based processing. J. Appl. Phys. 103, 014304 (2008).CrossRefGoogle Scholar
36.Ahn, S.E., Lee, J.S., Kim, H., Kim, S., Kang, B.H., Kim, K.H., and Kim, G.T.: Photoresponse of sol-gel-synthesized ZnO nanorods. Appl. Phys. Lett. 84, 5022 (2004).CrossRefGoogle Scholar
37.Kumar, P.S., Raj, A.D., Mangalaraj, D., and Nataraj, D.: Growth and characterization of ZnO nanostructured thin films by a two-step chemical method. Appl. Surf. Sci. 255, 2382 (2008).Google Scholar
38.Elias, J., Tena-Zaera, R., and Lévy-Clément, C.: Electrochemical deposition of ZnO nanowire arrays with tailored dimensions. J. Electroanal. Chem. 621, 171 (2008).CrossRefGoogle Scholar