Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T01:14:16.637Z Has data issue: false hasContentIssue false

Hydrothermal preparation of the mixed titanium (IV) phosphate-phenylphosphonates and characterization of their properties

Published online by Cambridge University Press:  31 January 2011

Enrique Jaimez
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Anatoly I. Bortun
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Sergei A. Khainakov
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Igor' I. Voitko
Affiliation:
Department of Chemistry, Kiev State Trade and Economic University, 19 Kyoto Str., 252156, Kiev, Ukraine
José R. García
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Julio Rodríguez
Affiliation:
Departamento de Química Orgánica e Inorgánica, Universidad de Oviedo, 33071 Oviedo, Spain
Get access

Extract

Mixed crystalline titanium (IV) phosphate-phenylphosphonates were synthesized under hydrothermal conditions using tetramethylammonium hydroxide as a templating reagent. It was found that at a relatively low molar ratio H3PO4 : PhPO3H2 in the reaction mixture (<1) only a pure α-titanium phenylphosphonate is formed. At the molar ratio H3PO4 : PhPO3H2 = (3–5): 1 the formation of a novel mixed compound titanium (IV) dihydrogenphosphate-hydrogenphosphate-phenylphosphonate takes place. Further increase of the ratio H3PO4 : PhPO3H2 gives mechanical mixtures of different phases. Preliminary results on the characterization of the novel compound of formula Ti(H2PO4)1.25(HPO4)0.12(C6H5PO3)1.25 · 0.3H2O are presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Clearfield, A., Nancollas, G.H., and Blessing, R.H., in Ion Exchange and Solvent Extraction, edited by Marinsky, J.A. and Marcus, Y. (Marcel Dekker, New York, 1973), Vol. 5.Google Scholar
2.Inorganic Ion Exchange Materials, edited by Clearfield, A. (CRC Press, Boca Raton, FL, 1982).Google Scholar
3.Alberti, G., in Recent Developments in Ion Exchange, edited by Willians, P.A. and Hudson, M. J. (Elsevier Applied Science, London, 1987).Google Scholar
4.Clearfield, A. and Jahangir, L.M., Recent Developments in Separation Science, edited by Navratil, J.D. (CRC Press, Boca Raton, FL, 1984).Google Scholar
5.Alberti, G. and Costantino, U., Inclusion Compounds. Inorganic and Physical Aspects of Inclusion, edited by Atwood, J. L., Davies, J. E.D., and MacNicol, D.D. (Oxford University Press, Oxford, 1991), Vol. 5.Google Scholar
6.Clearfield, A., Chem. Rev. 88, 125 (1988).CrossRefGoogle Scholar
7.Clearfield, A., Eur. J. Solid State Inorg. Chem. 28, 37 (1991).Google Scholar
8.Clearfield, A., Mater. Chem. Phys. 35, 257 (1993).CrossRefGoogle Scholar
9.Clearfield, A. and Thakur, D. S., J. Catal. 69, 230 (1981).Google Scholar
10.Maireles-Torres, P., Jiménez-Lopez, A., Oliveira-Pastor, P., Rodríguez-Ramos, E., Guerrero-Ruíz, A., and García-Fierro, J. L., J. Catal. 92, 81 (1982).Google Scholar
11.Amphlett, C.B., Inorganic Ion Exchangers (Elsevier, Amsterdam, 1964).Google Scholar
12.Vésely, V. and Pekárek, V., Talanta 19, 219 (1972).CrossRefGoogle Scholar
13.Bortun, A., Strelko, V.V., Jaimez, E., García, J. R., and Rodríguez, J., Chem. Mater 7, 249 (1995).CrossRefGoogle Scholar
14.Alberti, G., Cardini-Galli, P., Costantino, U., and Torracca, E., J. Inorg. Nucl. Chem. 29, 571 (1967).CrossRefGoogle Scholar
15.Allulli, S., Ferragina, C., Ginestra, A. La, Massucci, M.A., and Tomassini, N., J. Inorg. Nucl. Chem. 39, 1043 (1977).CrossRefGoogle Scholar
16.Bruque, S., Aranda, M.A.G., Losilla, E.R., Oliveira-Pastor, P., and Maireles-Torres, P., Inorg. Chem. 34, 893 (1995).CrossRefGoogle Scholar
17.Salvadó, M.A., Pertierra, P., García-Granda, S., García, J. R., and Rodríguez, J., Acta Cryst. B 52, 896 (1996).CrossRefGoogle Scholar
18.Li, Y. J. and Whittingham, M. S., Solid State Ionics 63, 391 (1993).CrossRefGoogle Scholar
19.Bortun, A. I., Bortun, L., Clearfield, A., Villa-García, M.A., García, J. R., and Rodríguez, J., J. Mater. Res. 11, 2490 (1996).CrossRefGoogle Scholar
20.Poojary, D.M., Hu, H. L., Campbell, F. L., and Clearfield, A., Acta Cryst. B 49, 996 (1993).CrossRefGoogle Scholar
21.Alberti, G., Casciola, M., Costantino, U., and Vivani, R., Adv. Mater. 8, 291 (1996).CrossRefGoogle Scholar
22.Dines, M.B. and Griffith, P. C., J. Phys. Chem. 86, 57 (1982).CrossRefGoogle Scholar
23.Kitson, R. E. and Mellon, G.M., Ind. Eng. Chem. 16, 379 (1944).Google Scholar
24.Jaimez, E., Bortun, A., Hix, G., García, J. R., Rodríguez, J., and Slade, R.C. T., J. Chem. Soc. Dalton Trans., 2285 (1996).Google Scholar
25.Schmutz, C., Barboux, V., Ribot, E., Taulelle, F., Verdaguer, M., and Fernández-Lorenzo, C., J. Non-Cryst. Solids 170, 250 (1994).CrossRefGoogle Scholar
26.Bortun, A. I., Khainakov, S.A., Bortun, L.N., Poojary, D.M., Rodríguez, J., García, J. R., and Clearfield, A., Chem. Mater. 9, 1805 (1997).CrossRefGoogle Scholar
27.MacLachlan, D. J. and Morgan, K.R., J. Phys. Chem. 94, 7656 (1990).CrossRefGoogle Scholar