Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:12:26.563Z Has data issue: false hasContentIssue false

Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion

Published online by Cambridge University Press:  31 January 2011

Donald F. Johnson
Affiliation:
Department of Chemistry, Princeton University, Princeton, New Jersey 08544
Emily A. Carter*
Affiliation:
Department of Mechanical and Aerospace Engineering, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Understanding the interaction between atomic hydrogen and solid tungsten is important for the development of fusion reactors in which proposed tungsten walls would be bombarded with high energy particles including hydrogen isotopes. Here, we report results from periodic density-functional theory calculations for three crucial aspects of this interaction: surface-to-subsurface diffusion of H into W, trapping of H at vacancies, and H-enhanced decohesion, with a view to assess the likely extent of hydrogen isotope incorporation into tungsten reactor walls. We find energy barriers of (at least) 2.08 eV and 1.77 eV for H uptake (inward diffusion) into W(001) and W(110) surfaces, respectively, along with very small barriers for the reverse process (outward diffusion). Although H dissolution in defect-free bulk W is predicted to be endothermic, vacancies in bulk W are predicted to exothermically trap multiple H atoms. Furthermore, adsorbed hydrogen is predicted to greatly stabilize W surfaces such that decohesion (fracture) may result from high local H concentrations.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Toschi, R., Barabaschi, P., Campbell, D., Elio, F., Maisonnier, D., Ward, D.How far is a fusion power reactor from an experimental reactor. Fusion Eng. Des. 56–57, 163 (2001)CrossRefGoogle Scholar
2.Bolt, H., Barabash, V., Krauss, W., Linke, J., Neu, R., Suzuki, S., Yoshida, N.Materials for the plasma-facing components of fusion reactors. J. Nucl. Mater. 329–33, 66 (2004)Google Scholar
3.Condon, J.B., Schober, T.Hydrogen bubbles in metals. J. Nucl. Mater. 207, 1 (1993)Google Scholar
4.Naujoks, D., Asmussen, K., Bessenrodt-Weberpals, M., Deschka, S., Dux, R., Engelhardt, W., Field, A.R., Fussmann, G., Fuchs, J.C., García-Rosales, C., Hirsch, S., Ignacz, P., Lieder, G., Mast, K.F., Neu, R., Radtke, R., Roth, J., Wenzel, U.Tungsten as target material in fusion devices. Nucl. Fusion 36, 671 (1996)Google Scholar
5.Kaufmann, M., Neu, R.Tungsten as first wall material in fusion devices. Fusion Eng. Des. 82, 521 (2007)CrossRefGoogle Scholar
6.Serra, E., Benamati, G., Ogorodnikova, O.V.Hydrogen isotopes transport parameters in fusion reactor materials. J. Nucl. Mater. 255, 105 (1998)Google Scholar
7.Shu, W.M., Kawasuso, A., Miwa, Y., Wakai, E., Luo, G.N., Yamanishi, T.Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315K. Phys. Scr. T. 128, 96 (2007)CrossRefGoogle Scholar
8.Alimov, V.K., Roth, J., Mayer, M.Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers. J. Nucl. Mater. 337, 619 (2005)Google Scholar
9.Poon, M., Macaulay-Newcombe, R.G., Davis, J.W., Haasz, A.A.Effects of background gas impurities during D+ irradiation on D trapping in single crystal tungsten. J. Nucl. Mater. 337, 629 (2005)CrossRefGoogle Scholar
10.Felter, T.E., Barker, R.A., Estrup, P.J.Phase-transition on Mo(100) and W(100) surfaces. Phys. Rev. Lett. 38, 1138 (1977)CrossRefGoogle Scholar
11.Debe, M.K., King, D.A.Clean thermally induced W[001](1 × 1)-]() R 45° surface-structure transition and its crystallography. Surf. Sci. 81, 193 (1979)CrossRefGoogle Scholar
12.Barker, R.A., Estrup, P.J.Surface-structures and phase-diagram for the H-W(001) chemisorption system. J. Chem. Phys. 74, 1442 (1981)CrossRefGoogle Scholar
13.King, D.A.Clean and adsorbate-induced surface phase-transitions on W(100). Phys. Scr. T. 4, 34 (1983)Google Scholar
14.Landskron, H., Bickel, N., Heinz, K., Schmidtlein, G., Muller, K.LEED intensity analysis of the clean W(100) C(2x2) surface reconstruction. J. Phys. Condens. Matter 1, 1 (1989)CrossRefGoogle Scholar
15.Altman, M.S., Estrup, P.J., Robinson, I.K.Multilayer reconstruction of the W(001) surface. Phys. Rev. B 38, 5211 (1988)CrossRefGoogle Scholar
16.Stensgaard, I., Feldman, L.C., Silverman, P.J.Reconstruction of the W(001) surface and its reordering by hydrogen adsorption, studied by MEV ion scattering. Phys. Rev. Lett. 42, 247 (1979)CrossRefGoogle Scholar
17.Shin, K.S., Kim, H.W., Chung, J.W.Evidence for a driving mechanism of the W(001) reconstruction. Surf. Sci. 385, L978 (1997)CrossRefGoogle Scholar
18.Yu, R., Krakauer, H., Singh, D.Equilibrium geometry and electronic-structure of the low-temperature W(001) surface. Phys. Rev. B 45, 8671 (1992)CrossRefGoogle Scholar
19.Xu, W., Adams, J.B.Structure of 7 W-surfaces. Surf. Sci. 319, 45 (1994)CrossRefGoogle Scholar
20.Meyerheim, H.L., Sander, D., Popescu, R., Steadman, P., Ferrer, S., Kirschner, J.Interlayer relaxation of W(110) studied by surface x-ray diffraction. Surf. Sci. 475, 103 (2001)Google Scholar
21.Arnold, M., Hupfauer, G., Bayer, P., Hammer, L., Heinz, K., Kohler, B., Scheffler, M.Hydrogen on W(110): An adsorption structure revisited. Surf. Sci. 382, 288 (1997)Google Scholar
22.Estrup, P.J., Anderson, J.Chemisorption of hydrogen on tungsten (100). J. Chem. Phys. 45, 2254 (1966)Google Scholar
23.Barker, R.A., Estrup, P.J.Hydrogen on tungsten (100) adsorbate induced surface reconstruction. Phys. Rev. Lett. 41, 1307 (1978)CrossRefGoogle Scholar
24.King, D.A., Thomas, G.Displacive surface phases formed by hydrogen chemisorption on W(001). Surf. Sci. 92, 201 (1980)Google Scholar
25.Smith, A.H., Barker, R.A., Estrup, P.J.Desorption of hydrogen from tungsten (100). Surf. Sci. 136, 327 (1984)Google Scholar
26.Tamm, P.W., Schmidt, L.D.Binding states of hydrogen on tungsten. J. Chem. Phys. 54, 4775 (1971)CrossRefGoogle Scholar
27.Plummer, E.W., Bell, A.E.Field-emission energy-distributions of hydrogen and deuterium on (100) and (110) planes of tungsten. J. Vac. Sci. Technol. 9, 583 (1972)Google Scholar
28.Restorff, J.B., Drew, H.D.Surface reflectance spectroscopy of hydrogen chemisorbed on W(100), W(110) and W(111). Surf. Sci. 88, 399 (1979)CrossRefGoogle Scholar
29.Difoggio, R., Gomer, R.Diffusion of hydrogen and deuterium on the (110) plane of tungsten. Phys. Rev. B 25, 3490 (1982)CrossRefGoogle Scholar
30.Wang, S.C., Gomer, R.Diffusion of hydrogen, deuterium, and tritium on the (110) plane of tungsten. J. Chem. Phys. 83, 4193 (1985)CrossRefGoogle Scholar
31.Dharmadhikari, C., Gomer, R.Diffusion of hydrogen and deuterium on the (111) plane of tungsten. Surf. Sci. 143, 223 (1984)CrossRefGoogle Scholar
32.Grizzi, O., Shi, M., Bu, H., Rabalais, J.W., Rye, R.R., Nordlander, P.Determination of the structure of hydrogen on a W(211) surface. Phys. Rev. Lett. 63, 1408 (1989)CrossRefGoogle Scholar
33.Fink, H.W., Ehrlich, G.Lattice steps and adatom binding on W(211). Surf. Sci. 143, 125 (1984)Google Scholar
34.Flahive, P.G., Graham, W.R.Determination of single atom surface site geometry on W(111), W(211) and W(321). Surf. Sci. 91, 463 (1980)Google Scholar
35.Rye, R.R., Barford, B.D., Cartier, P.G.Chemisorption of H2 on W(211). J. Chem. Phys. 59, 1693 (1973)Google Scholar
36.Grimley, T.B., Torrini, M.Interaction between two hydrogen atoms adsorbed on (100) tungsten. J. Phys. C: Solid State Phys. 6, 868 (1973)CrossRefGoogle Scholar
37.Henriksson, K.O.E., Vortler, K., Dreissigacker, S., Nordlund, K., Keinonen, J.Sticking of atomic hydrogen on the tungsten (001) surface. Surf. Sci. 600, 3167 (2006)CrossRefGoogle Scholar
38.Zhang, J., Yu, Y.J., Wang, Z.X., Qin, W.N., Diao, Z.Y., Hao, C.Adsorption sites and states for H atom on W low-index surfaces. Acta Chim. Sinica 65, 785 (2007)Google Scholar
39.Busnengo, H.F., Martinez, A.E.H2 chemisorption on W(100) and W(110) surfaces. J. Phys. Chem. C 112, 5579 (2008)CrossRefGoogle Scholar
40.Nojima, A., Yamashita, K.A theoretical study of hydrogen adsorption and diffusion on a W(110) surface. Surf. Sci. 601, 3003 (2007)Google Scholar
41.White, J.A., Bird, D.M., Payne, M.C.Dissociation of H2 on W(100). Phys. Rev. B 53, 1667 (1996)Google Scholar
42.Difoggio, R., Gomer, R.Tunneling of hydrogen in surface-diffusion on the tungsten-(110) plane. Phys. Rev. Lett. 44, 1258 (1980)Google Scholar
43.Kay, M., Darling, G.R., Holloway, S.Comparing quantum and classical dynamics: H2 dissociation on W(100). J. Chem. Phys. 108, 4614 (1998)CrossRefGoogle Scholar
44.Frauenfelder, R.Solution and diffusion of hydrogen in tungsten. J. Vac. Sci. Technol. 6, 388 (1969)CrossRefGoogle Scholar
45.Hayashi, Y., Shu, W.M.Iron (ruthenium and osmium)-hydrogen systems. Solid State Phenom. 73–75, 65 (2000)Google Scholar
46.Henriksson, K.O.E., Nordlund, K., Krasheninnikov, A., Keinonen, J.Difference in formation of hydrogen and helium clusters in tungsten. Appl. Phys. Lett. 87, 3 (2005)Google Scholar
47.Liu, Y.L., Zhang, Y., Luo, G.N., Lu, G.H.Structure, stability and diffusion of hydrogen in tungsten: A first-principles study. J. Nucl. Mater. 390–391, 1032 (2009)CrossRefGoogle Scholar
48.Jónsson, H., Mills, G., Jacobsen, K.W.Nudged elastic band method for finding minimum energy paths of transitionsClassical and Quantum Dynamics in Condensed Phase Simulations edited by B.J. Berne, G. Ciccotti, and D.F. Coker (World Scientific, Singapore 1998)385Google Scholar
49.Picraux, S.T., Vook, F.L.Deuterium lattice location in Cr and W. Phys. Rev. Lett. 33, 1216 (1974)Google Scholar
50.Anderl, R.A., Holland, D.F., Longhurst, G.R., Pawelko, R.J., Trybus, C.L., Sellers, C.H.Deuterium transport and trapping in polycrystalline tungsten. Fusion Technol. 21, 745 (1992)Google Scholar
51.Wilson, K.L., Bastasz, R., Causey, R.A., Brice, D.K., Doyle, B.L., Wampler, W.R., Moller, W., Scherzer, B.M.U., Tanabe, T.Trapping, detrapping and release of implanted hydrogen isotopes. Nucl. Fusion 1, 31 (1991)Google Scholar
52.Poon, M., Haasz, A.A., Davis, J.W.Modelling deuterium release during thermal desorption of D+-irradiated tungsten. J. Nucl. Mater. 374, 390 (2008)CrossRefGoogle Scholar
53.Venhaus, T.J., Causey, R.A.Analysis of thermal desorption spectra to understand the migration of hydrogen in tungsten. Fusion Technol. 39, 868 (2001)CrossRefGoogle Scholar
54.Soltan, A.S., Vassen, R., Jung, P.Migration and immobilization of hydrogen and helium in gold and tungsten at low temperatures. J. Appl. Phys. 70, 793 (1991)Google Scholar
55.Fransens, J.R., Elkeriem, M.S.A., Pleiter, F.Hydrogen vacancy interaction in tungsten. J. Phys. Condens. Matter 3, 9871 (1991)Google Scholar
56.Liu, Y.L., Zhang, Y., Zhou, H.B., Lu, G.H., Liu, F., Luo, G.N.Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys. Rev. B 79, 4 (2009)Google Scholar
57.Jiang, D.E., Carter, E.A.First principles assessment of ideal fracture energies of materials with mobile impurities: Implications for hydrogen embrittlement of metals. Acta Mater. 52, 4801 (2004)CrossRefGoogle Scholar
58.Kresse, G., Furthmuller, J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)CrossRefGoogle ScholarPubMed
59.Kresse, G., Furthmuller, J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
60.Kresse, G., Joubert, D.From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)Google Scholar
61.Blochl, P.E.Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)CrossRefGoogle ScholarPubMed
62.Perdew, J.P., Burke, K., Ernzerhof, M.Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)Google Scholar
63.Methfessel, M., Paxton, A.T.High-precision sampling for brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)Google Scholar
64.Kwak, K.W., Chou, M.Y., Troullier, N.First-principles study of the H-induced reconstruction of W(110). Phys. Rev. B 53, 13734 (1996)Google Scholar
65.Kittel, C.Introduction to Solid State Physics 7th ed. (John Wiley & Sons, Inc., New York 2002)Google Scholar
66.Huber, K.P., Herzberg, G.Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Van Norstrand Reinhold Co., New York 1979)Google Scholar
67.Vineyard, G.H.Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121 (1957)CrossRefGoogle Scholar
68.Huntington, H.B., Shirn, G.A., Wajda, E.S.Calculation of the entropies of lattice defects. Phys. Rev. 99, 1085 (1955)Google Scholar
69.Harris, J., Andersson, S.H2 dissociation at metal surfaces. Phys. Rev. Lett. 55, 1583 (1985)CrossRefGoogle ScholarPubMed
70.Wert, C., Zener, C.Interstitial atomic diffusion coefficients. Phys. Rev. 76, 1169 (1949)Google Scholar
71.Frauenfelder, R.Solution and diffusion of hydrogen in tungsten. J. Vacuum Sci. Technol. 6, 388 (1969)CrossRefGoogle Scholar
72.Devita, A., Gillan, M.J.The ab initio calculation of defect energetics in aluminum. J. Phys. Condens. Matter 3, 6225 (1991)Google Scholar
73.Tateyama, Y., Ohno, T.Stability and clusterization of hydrogen vacancy complexes in alpha-Fe: An ab initio study. Phys. Rev. B 67, 174105 (2003)CrossRefGoogle Scholar
74.Ramasubramaniam, A., Itakura, M., Carter, E.A.Interatomic potentials for hydrogen in alpha-iron based on density-functional theory. Phys. Rev. B 79, 174101 (2009)CrossRefGoogle Scholar
75.Fukai, Y.Superabundant vacancies formed in metal-hydrogen alloys. Phys. Scr. T. 103, 11 (2003)Google Scholar
76.Fukai, Y., Okuma, N.Formation of superabundant vacancies in Pd hydride under high hydrogen pressures. Phys. Rev. Lett. 73, 1640 (1994)CrossRefGoogle ScholarPubMed
77.Lu, G., Kaxiras, E.Hydrogen embrittlement of aluminum: The crucial role of vacancies. Phys. Rev. Lett. 94, 4 (2005)Google Scholar
78.Sorescu, D.C.First-principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk. Catal. Today 105, 44 (2005)Google Scholar
79.Luo, G.N., Shu, W.M., Nishi, M.Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10–100 eV plasmas. Fusion Eng. Des. 81, 957 (2006)CrossRefGoogle Scholar
80.Momma, K., Izumi, F.VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008)Google Scholar