Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T23:43:07.902Z Has data issue: false hasContentIssue false

Hydrogen in amorphous Ni–Zr: Pressure concentration isotherms, site occupation, and binding energies

Published online by Cambridge University Press:  29 June 2016

E. Batalla
Affiliation:
Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8
J. O. Strom-Olsen
Affiliation:
Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8
Z. Altounian
Affiliation:
Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8
D. Boothroyd
Affiliation:
Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8
R. Harris
Affiliation:
Rutherford Physics Building, McGill University, 3600 University Street, Montreal, Quebec, Canada H3A 2T8
Get access

Abstract

Measurements of pressure-concentration (p-c) isotherms of hydrogen in a wide variety of amorphous Ni—Zr alloys are presented. The measurements are complemented by an analysis of hydrogen sites in computer-generated amorphous clusters. The binding energy of these sites has been calculated using an effective medium theory. Filling these sites randomly in order of decreasing binding energy with a nearest-neighbor exclusion leads to a chemical potential in agreement with what is found from the (p-c) isotherms. In the pressure range required in a hydrogen-storage device (1–10 atm) the hydrogen occupies interstitial sites surrounded by 3Zr, 1Ni atoms or 2Zr, 2Ni atoms.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Maeland, A. J., in Hydrides for Energy Storage, edited by Andresen, A. F. and Maeland, A. J. (Pergamon, Oxford, 1978), p.447.CrossRefGoogle Scholar
2Maeland, A. J., in Proceedings of the Fifth International Conference on Rapidly Quenched Metals, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1985), p. 1507.Google Scholar
3Libowitz, G. G., Hayes, H. F., and Gibb, T. R. P. Jr., J. Phys. Chem. 62, 76 (1958).CrossRefGoogle Scholar
4Spit, F. M. H., Drijver, J. W., and Radelaar, S., Scr. Metall. 14, 1071 (1980).CrossRefGoogle Scholar
5Aoki, K., Horata, A., and Masumoto, T., in Proceedings of the 4th International Conference on Rapidly Quenched Metals, edited by Matsumoto, T. and Suzuki, K. (Japan Institute of Metals, Sendai, 1982), p. 1649.Google Scholar
6Griessen, R., Phys. Rev. B 27, 7575 (1983).CrossRefGoogle Scholar
7Lacher, J. R., Proc. R. Soc. London, Ser. A 161, 525 (1937).Google Scholar
8Richards, P. M., Phys. Rev. B. 30, 5183 (1984).CrossRefGoogle Scholar
9Altounian, Z., Guo-hua, Tu, and Strom-Olsen, J. O., J. Appl. Phys. 54, 3111 (1983).CrossRefGoogle Scholar
10Aoki, K., Kamachi, M., and Masumoto, T., J. Non-Cryst. Solids 61 & 62, 679 (1984).CrossRefGoogle Scholar
11Suzuki, H., Hayashi, N., Tomizuka, Y., Fukunaja, T., Kai, K., and Watanabe, N., in Ref. 10, p. 637.Google Scholar
12Stott, M. J. and Zaremba, E., Phys. Rev. B 22, 1564 (1980).CrossRefGoogle Scholar
13Norskov, J. K. and Lang, N. D., Phys. Rev. B 21, 2136 (1980).CrossRefGoogle Scholar
14Norskov, J. K., Phys. Rev. B 26, 2875 (1982).CrossRefGoogle Scholar
15Andersen, O. K., Skriver, H. L., Nohl, H., and Johansson, B., Pure Appl. Chem. 52, 93 (1979).CrossRefGoogle Scholar
16Moruzzi, V. L., Oelhafen, P., Williams, A. R., Lapka, R., Guntherodt, H. J., and Kubler, J., Phys. Rev. B 27, 2049 (1983).CrossRefGoogle Scholar
17Mueller, W. M., Blackledge, J. P., and Libowitz, G. G., Metal Hydrides (Academic, New York, 1968), p. 241.Google Scholar
18Westlake, D. G., Shaked, H., Mason, P. R., McCart, B. R., Mueller, M. H., Matsumoto, T., and Amano, M., J. Less-Comm. Met. 88, 17 (1982).CrossRefGoogle Scholar
19Manninen, M., Norskov, J. K., and Umrigar, C., J. Phys. F 12, L7 (1982).CrossRefGoogle Scholar
20Lewis, L. J. and Harris, R., J. Phys. F 13, 1359 (1983).Google Scholar
21Bennett, C. H., J. Appl. Phys. 43, 2727 (1972).CrossRefGoogle Scholar
22Fletcher, R. and Reeves, C. M., Comput. J. 7, 149 (1964).CrossRefGoogle Scholar
23Switendick, A. C., in SANDIA Laboratories Report No. SAND 78-0250(1978).Google Scholar
24Samwer, K., Yeh, X. L., and Johnson, W. L., in Ref. 10, p. 631.Google Scholar
25Haar, L., Friedman, A. S., and Bachertt, C. W., Nat. Bur. Stand. (U.S.) Monogr. 20 (May 1961).Google Scholar