Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T05:30:43.977Z Has data issue: false hasContentIssue false

Hydrogen concentration gradients in cathodically charged austenitic stainless steel

Published online by Cambridge University Press:  31 January 2011

D. G. Ulmer
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
C. J. Altstetter
Affiliation:
Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

An x-ray diffraction technique has been developed to make in-situ measurements of hydrogen concentration profiles from which diffusivity and solubility values are calculated. Hydrogen is supplied to the metal surface by cathodically polarizing it in a bath of 1N H2SO4 electrolyte. The incident x-ray beam penetrates a thin layer of electrolyte solution at the surface of the sample, thus, x-ray diffraction profile changes can be recorded as a function of charging time and temperature. The applied potential prevents outgassing of the specimen during the measurement. The x-ray diffraction profiles are deconvoluted to remove the α12 doublet and noncompositional broadening effects. Composition-depth profiles are then obtained from an intensity band transformation of the deconvoluted data. A diffusion coefficient is determined by fitting a solution to Fick's second law to the concentration-depth profile. The technique described here was used to measure hydrogen diffusivity in stainless steel in the temperature range 20°–80°C.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hughes, D. E.Sci. Am. Suppl. 237 (1880).Google Scholar
2Whiteman, M. B. and Troiano, A. R.Corrosion 21, 53 (1965).CrossRefGoogle Scholar
3Walter, R. J.Jewett, R. P. and Chandler, W. T.Mater. Sci. Eng. 5, 98 (1969/1970).Google Scholar
4Kolts, J.Stress Corrosion-New Approaches, ASTM-STP 610 (American Society for Testing and Materials, Philadelphia, PA, 1976), pp. 366380.CrossRefGoogle Scholar
5Li., J. C. M., Metall. Trans. A 9, 1353 (1978).Google Scholar
6Holzworth, M. L. and Louthan, M. R. Jr. , Corrosion 24, 110 (1968).CrossRefGoogle Scholar
7Narita, N.Altstetter, C. J. and Birnbaum, H. K.Metall. Trans. A 13 1355 (1982).CrossRefGoogle Scholar
8Mathias, H.Katz, Y. and Nadiv, S.Met. Sci. 12, 129 (1978).Google Scholar
9Kamachi, K.Trans. Iron Steel Inst. Jpn. 18, 485 (1978).CrossRefGoogle Scholar
10Szummer, A. and Janko, A.Corrosion 35, 1461 (1979).CrossRefGoogle Scholar
11Louthan, M. R. Jr. , Predictive Capabilities in Environmentally Assisted Cracking, edited by Rungta, R. (American Society of Mechanical Engineers, New York, 1985), pp. 235243.Google Scholar
12Kumnick, A. G. and Johnson, H. H.Metall. Trans. A 6, 1087 (1975).CrossRefGoogle Scholar
13Oriani, R. A.Acta Metall. 18, 147 (1970).CrossRefGoogle Scholar
14Pines, B. la. and Chaidouski, E. F.Dokl. Acad. Nauk. SSSR 111, 1234 (1956).Google Scholar
15Houska, C. R.J. Appl. Phys. 41, 69 (1970).CrossRefGoogle Scholar
16Tenney, D. R.Carpenter, J. A. and Houska, C. R.J. Appl. Phys. 41, 4485 (1970).CrossRefGoogle Scholar
17Unnam, J.Carpenter, J. A. and Houska, C. R.J. Appl. Phys. 44, 1957 (1973).CrossRefGoogle Scholar
18Wiedemann, K. E. and Unnam, J.J. Appl. Phys. 58, 1095 (1985).CrossRefGoogle Scholar
19Zevin, L. S. and Melamed, Z.J. Appl. Crystallogr. 18, 267 (1985).CrossRefGoogle Scholar
20Frank, R. C.Baker, J. E. and Altstetter, C. J.Metall. Trans. A 13, 581 (1982).Google Scholar
21Ladna, B. and Birnbaum, H. K. Acta. Metall. (to be published).Google Scholar
22Farrell, K. and Lewis, M. B.Scr. Metall. 15, 661 (1981).CrossRefGoogle Scholar
23Tahtinen, S.Kivilahti, J. and Hanninen, H.Third International Congress on Hydrogen and Materials, Paris, 1982, edited by Azou, P. pp. 185190.Google Scholar
24Stone, G. and Thomas, G.Metall. Trans. 5, 2095 (1974).CrossRefGoogle Scholar
25Wiedemann, K. E. and Unnam, J. University of Georgia, 1984, Report No. LAR-13356, COSMIC.Google Scholar
26Crank, J., The Mathematics of Diffusion (Clarendon, Oxford, 1956).Google Scholar
27Cullity, B. D.Elements of X-Ray Diffraction (Addison-Wesley, Reading, MA, 1978), p. 134.Google Scholar
28Peisl, H.Hydrogen in Metals I, edited by Alefeld, G. and Volkl, J. (Springer, Berlin, 1978), pp. 5374.CrossRefGoogle Scholar
29Houska, C. R.Treatise on Materials Science and Technology, edited by Herman, H. (Academic, New York, 1980), Vol. 19A, pp. 63105.Google Scholar
30Larche, F. C. and Cahn, J. W.Acta Metall. 30, 1835 (1982).Google Scholar
31Perng, T. P. and Altstetter, C. J.Acta Metall. 34, 1771 (1986).Google Scholar
32Louthan, M. R. and Derrick, R. G.Corrosion Sci. 15, 565 (1975).CrossRefGoogle Scholar
33Austin, J. H. and Elleman, T. S.J. Nucl. Mater. 43, 119 (1972).CrossRefGoogle Scholar
34Baranowski, B.Majchrzak, S. and Flanagan, T. B.J. Phys. F 1, 258 (1971).CrossRefGoogle Scholar
35Lauf, R. J. and Altstetter, C. J.Acta Metall. 27, 1157 (1979).CrossRefGoogle Scholar
36Steckel, G. L. and Altstetter, C. J.Acta Metall. 24, 1131 (1976).CrossRefGoogle Scholar